Python operator.__mul__() Examples

The following are 13 code examples of operator.__mul__(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module operator , or try the search function .
Example #1
Source File: backend_vsa.py    From claripy with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def __init__(self):
        Backend.__init__(self)
        # self._make_raw_ops(set(expression_operations) - set(expression_set_operations), op_module=BackendVSA)
        self._make_expr_ops(set(expression_set_operations), op_class=self)
        self._make_raw_ops(set(backend_operations_vsa_compliant), op_module=BackendVSA)

        self._op_raw['StridedInterval'] = BackendVSA.CreateStridedInterval
        self._op_raw['ValueSet'] = ValueSet.__init__
        self._op_raw['AbstractLocation'] = AbstractLocation.__init__
        self._op_raw['Reverse'] = BackendVSA.Reverse
        self._op_raw['If'] = self.If
        self._op_expr['BVV'] = self.BVV
        self._op_expr['BoolV'] = self.BoolV
        self._op_expr['BVS'] = self.BVS

        # reduceable
        self._op_raw['__add__'] = self._op_add
        self._op_raw['__sub__'] = self._op_sub
        self._op_raw['__mul__'] = self._op_mul
        self._op_raw['__or__'] = self._op_or
        self._op_raw['__xor__'] = self._op_xor
        self._op_raw['__and__'] = self._op_and
        self._op_raw['__mod__'] = self._op_mod 
Example #2
Source File: test_solve.py    From pyx with GNU General Public License v2.0 5 votes vote down vote up
def testMath(self):
        self.failUnlessEqual(str(-vector(2, "a")), "unnamed_vector{=(unnamed_scalar{=-1.0} * a[0], unnamed_scalar{=-1.0} * a[1])}")
        self.failUnlessEqual(str(vector(2, "a") + vector(2, "b")), "unnamed_vector{=(a[0]  +  b[0], a[1]  +  b[1])}")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, 1, vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, vector(2), 1)
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, scalar(), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, vector(2), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, scalar() + scalar(), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, vector(2), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, vector(2), vector(3))
        self.failUnlessEqual(str(vector(2, "a") - vector(2, "b")), "unnamed_vector{=(unnamed_scalar{=-1.0} * b[0]  +  a[0], unnamed_scalar{=-1.0} * b[1]  +  a[1])}")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, 1, vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, vector(2), 1)
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, scalar(), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, vector(2), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, scalar() + scalar(), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, vector(2), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, vector(2), vector(3))
        self.failUnlessEqual(str(2 * vector(2, "a")), "unnamed_vector{=(a[0] * unnamed_scalar{=2.0}, a[1] * unnamed_scalar{=2.0})}")
        self.failUnlessEqual(str(vector(2, "a") * 2), "unnamed_vector{=(a[0] * unnamed_scalar{=2.0}, a[1] * unnamed_scalar{=2.0})}")
        self.failUnlessEqual(str(scalar(name="s") * vector(2, "a")), "unnamed_vector{=(a[0] * s, a[1] * s)}")
        self.failUnlessEqual(str(scalar(name="s") * (vector(2, "a") + vector(2, "b"))), "unnamed_vector{=(a[0] * s  +  b[0] * s, a[1] * s  +  b[1] * s)}")
        self.failUnlessEqual(str((scalar(name="s") + scalar(name="t")) * vector(2, "a")), "unnamed_vector{=(a[0] * s  +  a[0] * t, a[1] * s  +  a[1] * t)}")
        self.failUnlessEqual(str((scalar(name="s") + scalar(name="t")) * (vector(2, "a") + vector(2, "b"))), "unnamed_vector{=(a[0] * s  +  b[0] * s  +  a[0] * t  +  b[0] * t, a[1] * s  +  b[1] * s  +  a[1] * t  +  b[1] * t)}")
        self.failUnlessEqual(str(vector(2, "a") * scalar(name="s")), "unnamed_vector{=(a[0] * s, a[1] * s)}")
        self.failUnlessEqual(str(vector(2, "a") * vector(2, "b")), "a[0] * b[0]  +  a[1] * b[1]")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__mul__, vector(2, "a"), vector(3))
        self.failUnlessEqual(str(vector(2, "a") / 2.0), "unnamed_vector{=(unnamed_scalar{=0.5} * a[0], unnamed_scalar{=0.5} * a[1])}")
        self.failUnlessEqual(str(vector(2, "a") / 2), "unnamed_vector{=(unnamed_scalar{=0.0} * a[0], unnamed_scalar{=0.0} * a[1])}") # integer logic!
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, scalar(), vector(1))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, scalar() + scalar(), vector(1))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, vector(1), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, vector(1), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, vector(1), vector(1)) 
Example #3
Source File: test_solve.py    From pyx with GNU General Public License v2.0 5 votes vote down vote up
def testMath(self):
        self.failUnlessEqual(str(-matrix([2, 3], "A")), "unnamed_matrix{=((unnamed_scalar{=-1.0} * A[0, 0], unnamed_scalar{=-1.0} * A[0, 1], unnamed_scalar{=-1.0} * A[0, 2]), (unnamed_scalar{=-1.0} * A[1, 0], unnamed_scalar{=-1.0} * A[1, 1], unnamed_scalar{=-1.0} * A[1, 2]))}")
        self.failUnlessEqual(str(matrix([2, 3], "A") + matrix([2, 3], "B")), "unnamed_matrix{=((A[0, 0]  +  B[0, 0], A[0, 1]  +  B[0, 1], A[0, 2]  +  B[0, 2]), (A[1, 0]  +  B[1, 0], A[1, 1]  +  B[1, 1], A[1, 2]  +  B[1, 2]))}")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), 1)
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), vector(3))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), matrix([2, 4]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), matrix([3, 3]))
        self.failUnlessEqual(str(matrix([2, 3], "A") - matrix([2, 3], "B")), "unnamed_matrix{=((unnamed_scalar{=-1.0} * B[0, 0]  +  A[0, 0], unnamed_scalar{=-1.0} * B[0, 1]  +  A[0, 1], unnamed_scalar{=-1.0} * B[0, 2]  +  A[0, 2]), (unnamed_scalar{=-1.0} * B[1, 0]  +  A[1, 0], unnamed_scalar{=-1.0} * B[1, 1]  +  A[1, 1], unnamed_scalar{=-1.0} * B[1, 2]  +  A[1, 2]))}")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), 1)
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), vector(3))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), matrix([2, 4]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), matrix([3, 3]))
        self.failUnlessEqual(str(2 * matrix([2, 3], "A")), "unnamed_matrix{=((A[0, 0] * unnamed_scalar{=2.0}, A[0, 1] * unnamed_scalar{=2.0}, A[0, 2] * unnamed_scalar{=2.0}), (A[1, 0] * unnamed_scalar{=2.0}, A[1, 1] * unnamed_scalar{=2.0}, A[1, 2] * unnamed_scalar{=2.0}))}")
        self.failUnlessEqual(str(matrix([2, 3], "A") * 2), "unnamed_matrix{=((A[0, 0] * unnamed_scalar{=2.0}, A[0, 1] * unnamed_scalar{=2.0}, A[0, 2] * unnamed_scalar{=2.0}), (A[1, 0] * unnamed_scalar{=2.0}, A[1, 1] * unnamed_scalar{=2.0}, A[1, 2] * unnamed_scalar{=2.0}))}")
        self.failUnlessEqual(str(matrix([2, 3], "A") * vector(3, "a")), "unnamed_vector{=(A[0, 0] * a[0]  +  A[0, 1] * a[1]  +  A[0, 2] * a[2], A[1, 0] * a[0]  +  A[1, 1] * a[1]  +  A[1, 2] * a[2])}")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__mul__, vector(2, "a"), matrix([2, 3], "A"))
        self.failUnlessEqual(str(matrix([2, 3], "A") * matrix([3, 2], "B")), "unnamed_matrix{=((A[0, 0] * B[0, 0]  +  A[0, 1] * B[1, 0]  +  A[0, 2] * B[2, 0], A[0, 0] * B[0, 1]  +  A[0, 1] * B[1, 1]  +  A[0, 2] * B[2, 1]), (A[1, 0] * B[0, 0]  +  A[1, 1] * B[1, 0]  +  A[1, 2] * B[2, 0], A[1, 0] * B[0, 1]  +  A[1, 1] * B[1, 1]  +  A[1, 2] * B[2, 1]))}")
        self.failUnlessEqual(str(matrix([2, 3], "A") / 2.0), "unnamed_matrix{=((unnamed_scalar{=0.5} * A[0, 0], unnamed_scalar{=0.5} * A[0, 1], unnamed_scalar{=0.5} * A[0, 2]), (unnamed_scalar{=0.5} * A[1, 0], unnamed_scalar{=0.5} * A[1, 1], unnamed_scalar{=0.5} * A[1, 2]))}")
        self.failUnlessEqual(str(matrix([2, 3], "A") / 2), "unnamed_matrix{=((unnamed_scalar{=0.0} * A[0, 0], unnamed_scalar{=0.0} * A[0, 1], unnamed_scalar{=0.0} * A[0, 2]), (unnamed_scalar{=0.0} * A[1, 0], unnamed_scalar{=0.0} * A[1, 1], unnamed_scalar{=0.0} * A[1, 2]))}")
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, scalar(), matrix([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, scalar() + scalar(), matrix([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, vector(1), matrix([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, matrix([2, 3]), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, matrix([2, 3]), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, matrix([2, 3]), vector(1))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, matrix([2, 3]), matrix([2, 3])) 
Example #4
Source File: backend_vsa.py    From claripy with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def _op_mul(*args):
        return reduce(operator.__mul__, args) 
Example #5
Source File: backend_z3.py    From claripy with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def _op_mul(*args):
        return reduce(operator.__mul__, args) 
Example #6
Source File: backend_concrete.py    From claripy with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def __init__(self):
        Backend.__init__(self)
        self._make_raw_ops(set(backend_operations) - { 'If' }, op_module=bv)
        self._make_raw_ops(backend_strings_operations, op_module=strings)
        self._make_raw_ops(backend_fp_operations, op_module=fp)
        self._op_raw['If'] = self._If
        self._op_raw['BVV'] = self.BVV
        self._op_raw['StringV'] = self.StringV
        self._op_raw['FPV'] = self.FPV

        # reduceable
        self._op_raw['__add__'] = self._op_add
        self._op_raw['__sub__'] = self._op_sub
        self._op_raw['__mul__'] = self._op_mul
        self._op_raw['__or__'] = self._op_or
        self._op_raw['__xor__'] = self._op_xor
        self._op_raw['__and__'] = self._op_and

        # unary
        self._op_raw['__invert__'] = self._op_not
        self._op_raw['__neg__'] = self._op_neg

        # boolean ops
        self._op_raw['And'] = self._op_and
        self._op_raw['Or'] = self._op_or
        self._op_raw['Xor'] = self._op_xor
        self._op_raw['Not'] = self._op_boolnot

        self._cache_objects = False 
Example #7
Source File: lineroot.py    From backtrader with GNU General Public License v3.0 5 votes vote down vote up
def __mul__(self, other):
        return self._operation(other, operator.__mul__) 
Example #8
Source File: lineroot.py    From backtrader with GNU General Public License v3.0 5 votes vote down vote up
def __rmul__(self, other):
        return self._roperation(other, operator.__mul__) 
Example #9
Source File: Pbinop.py    From supriya with MIT License 5 votes vote down vote up
def _string_to_operator(self):
        operators = {
            "+": operator.__add__,
            "-": operator.__sub__,
            "*": operator.__mul__,
            "**": operator.__pow__,
            "/": operator.__truediv__,
            "//": operator.__floordiv__,
        }
        return operators[self.operator]

    ### PUBLIC PROPERTIES ### 
Example #10
Source File: genericmatrix.py    From pyfinite with MIT License 5 votes vote down vote up
def __mul__(self,other):
        if (self.cols != other.rows):
            raise ValueError("dimension mismatch")
        result = self.MakeSimilarMatrix((self.rows,other.cols),'z')
                               
        for i in range(self.rows):
            for j in range(other.cols):
                result.data[i][j] = reduce(self.add, map(
                    self.mul,self.data[i], other.GetColumn(j)))
        return result 
Example #11
Source File: rule_model.py    From geosolver with Apache License 2.0 5 votes vote down vote up
def get_tree_score(self, semantic_tree):
        assert isinstance(semantic_tree, SemanticTreeNode)
        unary_rules = semantic_tree.get_unary_rules()
        binary_rules = semantic_tree.get_binary_rules()
        scores = [self.get_score(rule) for rule in itertools.chain(unary_rules, binary_rules)]
        return reduce(__mul__, scores, 1) 
Example #12
Source File: test_solve.py    From pyx with GNU General Public License v2.0 4 votes vote down vote up
def testMath(self):
        self.failUnlessEqual(str(-trafo([2, 3], "A")), str(trafo((-matrix([2, 3], "A_matrix"), -vector(2, "A_vector")))))
        self.failUnlessEqual(str(trafo([2, 3], "A") + trafo([2, 3], "B")), str(trafo((matrix([2, 3], "A_matrix") + matrix([2, 3], "B_matrix"), vector(2, "A_vector") + vector(2, "B_vector")))))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, 1, trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), 1)
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, scalar(), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, scalar() + scalar(), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, vector(2), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, vector(3), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), vector(3))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, matrix([2, 3]), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), matrix([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), trafo([2, 4]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__add__, trafo([2, 3]), trafo([3, 3]))
        self.failUnlessEqual(str(trafo([2, 3], "A") - trafo([2, 3], "B")), str(trafo((matrix([2, 3], "A_matrix") - matrix([2, 3], "B_matrix"), vector(2, "A_vector") - vector(2, "B_vector")))))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, 1, trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), 1)
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, scalar(), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, scalar() + scalar(), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, vector(2), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, vector(3), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), vector(3))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, matrix([2, 3]), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), matrix([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), trafo([2, 4]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__sub__, trafo([2, 3]), trafo([3, 3]))
        self.failUnlessEqual(str(trafo([2, 3], "A") * trafo([3, 4], "B")), str(trafo((matrix([2, 3], "A_matrix") * matrix([3, 4], "B_matrix"), vector(2, "A_vector") + matrix([2, 3], "A_matrix") * vector(3, "B_vector")))))
        self.failUnlessEqual(str(2 * trafo([2, 3], "A")), str(trafo((2 * matrix([2, 3], "A_matrix"), 2 * vector(2, "A_vector")))))
        self.failUnlessEqual(str(trafo([2, 3], "A") * 2), str(trafo((matrix([2, 3], "A_matrix") * 2, vector(2, "A_vector") * 2))))
        self.failUnlessEqual(str(scalar() * trafo([2, 3], "A")), str(trafo((scalar() * matrix([2, 3], "A_matrix"), scalar() * vector(2, "A_vector")))))
        self.failUnlessEqual(str(trafo([2, 3], "A") * scalar()), str(trafo((matrix([2, 3], "A_matrix") * scalar(), vector(2, "A_vector") * scalar()))))
        self.failUnlessEqual(str((scalar() + scalar()) * trafo([2, 3], "A")), str(trafo(((scalar() + scalar()) * matrix([2, 3], "A_matrix"), (scalar() + scalar()) * vector(2, "A_vector")))))
        self.failUnlessEqual(str(trafo([2, 3], "A") * (scalar() + scalar())), str(trafo((matrix([2, 3], "A_matrix") * (scalar() + scalar()), vector(2, "A_vector") * (scalar() + scalar())))))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__mul__, vector(2), trafo([2, 3]))
        self.failUnlessEqual(str(trafo([2, 3], "A") * vector(3, "a")), str(matrix([2, 3], "A_matrix") * vector(3, "a") + vector(2, "A_vector")))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__mul__, trafo([2, 3]), vector(2))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__mul__, matrix([3, 2]), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__mul__, trafo([2, 3]), matrix([3, 2]))
        self.failUnlessEqual(str(trafo([2, 3], "A") / 2.0), str(trafo((matrix([2, 3], "A_matrix") / 2.0, vector(2, "A_vector") / 2.0))))
        self.failUnlessEqual(str(trafo([2, 3], "A") / 2), str(trafo((matrix([2, 3], "A_matrix") / 2, vector(2, "A_vector") / 2))))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, scalar(), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, scalar() + scalar(), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, vector(1), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, matrix([2, 3]), trafo([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, trafo([2, 3]), scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, trafo([2, 3]), scalar() + scalar())
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, trafo([2, 3]), vector(1))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, trafo([2, 3]), matrix([2, 3]))
        self.failUnlessRaises((RuntimeError, AttributeError, TypeError), operator.__div__, trafo([2, 3]), trafo([2, 3])) 
Example #13
Source File: backend_z3.py    From claripy with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def __init__(self, reuse_z3_solver=None, ast_cache_size=10000):
        Backend.__init__(self, solver_required=True)
        self._enable_simplification_cache = False
        self._hash_to_constraint = weakref.WeakValueDictionary()

        # Per-thread Z3 solver
        # This setting is treated as a global setting and is not supposed to be changed during runtime, unless you know
        # what you are doing.
        if reuse_z3_solver is None:
            reuse_z3_solver = True if os.environ.get('REUSE_Z3_SOLVER', "False").lower() in {"1", "true", "yes", "y"} \
                else False
        self.reuse_z3_solver = reuse_z3_solver

        self._ast_cache_size = ast_cache_size

        # and the operations
        all_ops = backend_fp_operations | backend_operations if supports_fp else backend_operations
        all_ops |= backend_strings_operations - {'StrIsDigit'} 
        for o in all_ops - {'BVV', 'BoolV', 'FPV', 'FPS', 'BitVec', 'StringV'}:
            self._op_raw[o] = getattr(self, '_op_raw_' + o)
        self._op_raw['Xor'] = self._op_raw_Xor

        self._op_raw['__ge__'] = self._op_raw_UGE
        self._op_raw['__gt__'] = self._op_raw_UGT
        self._op_raw['__le__'] = self._op_raw_ULE
        self._op_raw['__lt__'] = self._op_raw_ULT

        self._op_raw['Reverse'] = self._op_raw_Reverse
        self._op_raw['Identical'] = self._identical
        self._op_raw['fpToSBV'] = self._op_raw_fpToSBV
        self._op_raw['fpToUBV'] = self._op_raw_fpToUBV

        self._op_expr['BVS'] = self.BVS
        self._op_expr['BVV'] = self.BVV
        self._op_expr['FPV'] = self.FPV
        self._op_expr['FPS'] = self.FPS
        self._op_expr['BoolV'] = self.BoolV
        self._op_expr['BoolS'] = self.BoolS
        self._op_expr['StringV'] = self.StringV
        self._op_expr['StringS'] = self.StringS

        self._op_raw['__floordiv__'] = self._op_div
        self._op_raw['__mod__'] = self._op_mod

        # reduceable
        self._op_raw['__add__'] = self._op_add
        self._op_raw['__sub__'] = self._op_sub
        self._op_raw['__mul__'] = self._op_mul
        self._op_raw['__or__'] = self._op_or
        self._op_raw['__xor__'] = self._op_xor
        self._op_raw['__and__'] = self._op_and

    # XXX this is a HUGE HACK that should be removed whenever uninitialized gets moved to the
    # "proposed annotation backend" or wherever will prevent it from being part of the object
    # identity. also whenever the VSA attributes get the fuck out of BVS as well