Python numpy.std() Examples
The following are 30
code examples of numpy.std().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: utils.py From nmp_qc with MIT License | 8 votes |
def get_graph_stats(graph_obj_handle, prop='degrees'): # if prop == 'degrees': num_cores = multiprocessing.cpu_count() inputs = [int(i*len(graph_obj_handle)/num_cores) for i in range(num_cores)] + [len(graph_obj_handle)] res = Parallel(n_jobs=num_cores)(delayed(get_values)(graph_obj_handle, inputs[i], inputs[i+1], prop) for i in range(num_cores)) stat_dict = {} if 'degrees' in prop: stat_dict['degrees'] = list(set([d for core_res in res for file_res in core_res for d in file_res['degrees']])) if 'edge_labels' in prop: stat_dict['edge_labels'] = list(set([d for core_res in res for file_res in core_res for d in file_res['edge_labels']])) if 'target_mean' in prop or 'target_std' in prop: param = np.array([file_res['params'] for core_res in res for file_res in core_res]) if 'target_mean' in prop: stat_dict['target_mean'] = np.mean(param, axis=0) if 'target_std' in prop: stat_dict['target_std'] = np.std(param, axis=0) return stat_dict
Example #2
Source File: reversing_gan.py From gandlf with MIT License | 6 votes |
def reverse_generator(generator, X_sample, y_sample, title): """Gradient descent to map images back to their latent vectors.""" latent_vec = np.random.normal(size=(1, 100)) # Function for figuring out how to bump the input. target = K.placeholder() loss = K.sum(K.square(generator.outputs[0] - target)) grad = K.gradients(loss, generator.inputs[0])[0] update_fn = K.function(generator.inputs + [target], [grad]) # Repeatedly apply the update rule. xs = [] for i in range(60): print('%d: latent_vec mean=%f, std=%f' % (i, np.mean(latent_vec), np.std(latent_vec))) xs.append(generator.predict_on_batch([latent_vec, y_sample])) for _ in range(10): update_vec = update_fn([latent_vec, y_sample, X_sample])[0] latent_vec -= update_vec * update_rate # Plots the samples. xs = np.concatenate(xs, axis=0) plot_as_gif(xs, X_sample, title)
Example #3
Source File: cmag.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def sigma_bin_walls(sigma, bins): import scipy, scipy.cluster, scipy.cluster.vq as vq std = np.std(sigma) if np.isclose(std, 0): return pimms.imm_array([0, np.max(sigma)]) cl = sorted(std * vq.kmeans(sigma/std, bins)[0]) cl = np.mean([cl[:-1],cl[1:]], axis=0) return pimms.imm_array(np.concatenate(([0], cl, [np.max(sigma)])))
Example #4
Source File: insertsizes.py From svviz with MIT License | 6 votes |
def __init__(self, bam, keepReads=False): self.insertSizes = [] self.readLengths = [] self.orientations = [] self._insertSizeKDE = None self.singleEnded = False self._insertSizeScores = {} # cache try: self.insertSizes, self.reads, self.orientations, self.readLengths = sampleInsertSizes(bam, keepReads=keepReads) if len(self.insertSizes) > 1: logging.info(" insert size mean: {:.2f} std: {:.2f}".format(numpy.mean(self.insertSizes), numpy.std(self.insertSizes))) except ValueError as e: print("*"*100, "here") print("ERROR:", e)
Example #5
Source File: bollinger_bands.py From TradzQAI with Apache License 2.0 | 6 votes |
def upper_bollinger_band(data, period, std_mult=2.0): """ Upper Bollinger Band. Formula: u_bb = SMA(t) + STD(SMA(t-n:t)) * std_mult """ check_for_period_error(data, period) period = int(period) simple_ma = sma(data, period)[period-1:] upper_bb = [] for idx in range(len(data) - period + 1): std_dev = np.std(data[idx:idx + period]) upper_bb.append(simple_ma[idx] + std_dev * std_mult) upper_bb = fill_for_noncomputable_vals(data, upper_bb) return np.array(upper_bb)
Example #6
Source File: bollinger_bands.py From TradzQAI with Apache License 2.0 | 6 votes |
def lower_bollinger_band(data, period, std=2.0): """ Lower Bollinger Band. Formula: u_bb = SMA(t) - STD(SMA(t-n:t)) * std_mult """ check_for_period_error(data, period) period = int(period) simple_ma = sma(data, period)[period-1:] lower_bb = [] for idx in range(len(data) - period + 1): std_dev = np.std(data[idx:idx + period]) lower_bb.append(simple_ma[idx] - std_dev * std) lower_bb = fill_for_noncomputable_vals(data, lower_bb) return np.array(lower_bb)
Example #7
Source File: bollinger_bands.py From TradzQAI with Apache License 2.0 | 6 votes |
def bandwidth(data, period, std=2.0): """ Bandwidth. Formula: bw = u_bb - l_bb / m_bb """ check_for_period_error(data, period) period = int(period) bandwidth = ((upper_bollinger_band(data, period, std) - lower_bollinger_band(data, period, std)) / middle_bollinger_band(data, period, std) ) return bandwidth
Example #8
Source File: standard_deviation.py From TradzQAI with Apache License 2.0 | 6 votes |
def standard_deviation(data, period): """ Standard Deviation. Formula: std = sqrt(avg(abs(x - avg(x))^2)) """ check_for_period_error(data, period) stds = list(map( lambda idx: np.std(data[idx+1-period:idx+1], ddof=1), range(period-1, len(data)) )) stds = fill_for_noncomputable_vals(data, stds) return stds
Example #9
Source File: utils.py From cs294-112_hws with MIT License | 6 votes |
def log(self): end_idxs = np.nonzero(self._dones)[0] + 1 returns = [] start_idx = 0 for end_idx in end_idxs: rewards = self._rewards[start_idx:end_idx] returns.append(np.sum(rewards)) start_idx = end_idx logger.record_tabular('ReturnAvg', np.mean(returns)) logger.record_tabular('ReturnStd', np.std(returns)) logger.record_tabular('ReturnMin', np.min(returns)) logger.record_tabular('ReturnMax', np.max(returns)) ################## ### Tensorflow ### ##################
Example #10
Source File: train_policy.py From cs294-112_hws with MIT License | 6 votes |
def update_critic(self, ob_no, hidden, q_n): """ given: self.num_value_iters self.l2_reg arguments: ob_no: (minibsize, history, meta_obs_dim) hidden: (minibsize, self.gru_size) q_n: (minibsize) requires: self.num_value_iters """ target_n = (q_n - np.mean(q_n))/(np.std(q_n)+1e-8) for k in range(self.num_value_iters): critic_loss, _ = self.sess.run( [self.critic_loss, self.critic_update_op], feed_dict={self.sy_target_n: target_n, self.sy_ob_no: ob_no, self.sy_hidden: hidden}) return critic_loss
Example #11
Source File: feature_verification.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get(self): tpr, fpr, accuracy, threshold = calculate_roc( self.thresholds, np.asarray( self.dists), np.asarray( self.issame), self.nfolds) val, val_std, far = calculate_val( self.thresholds, np.asarray( self.dists), np.asarray( self.issame), self.far_target, self.nfolds) acc, acc_std = np.mean(accuracy), np.std(accuracy) threshold = ( 1 - threshold) if self.dist_type == 'cosine' else threshold return tpr, fpr, acc, threshold, val, val_std, far, acc_std # code below is modified from project <Facenet (David Sandberg)> and # <Gluon-Face>
Example #12
Source File: PP.py From pytorch-mri-segmentation-3D with MIT License | 6 votes |
def extractMeanDataStats(size = [200, 200, 100], postfix = '_200x200x100orig', main_folder_path = '../../Data/MS2017b/', ): scan_folders = glob.glob(main_folder_path + 'scans/*') img_path = 'pre/FLAIR' + postfix + '.nii.gz' segm_path = 'wmh' + postfix + '.nii.gz' shape_ = [len(scan_folders), size[0], size[1], size[2]] arr = np.zeros(shape_) for i, sf in enumerate(scan_folders): arr[i, :,:,:] = numpyFromScan(os.path.join(sf,img_path)).squeeze() arr /= len(scan_folders) means = np.mean(arr) stds = np.std(arr, axis = 0) np.save(main_folder_path + 'extra_data/std' + postfix, stds) np.save(main_folder_path + 'extra_data/mean' + postfix, means)
Example #13
Source File: test_std.py From differential-privacy-library with MIT License | 5 votes |
def test_not_none(self): mech = std self.assertIsNotNone(mech)
Example #14
Source File: estimator.py From EDeN with MIT License | 5 votes |
def bias_variance_decomposition(self, graphs, targets, cv=5, n_bootstraps=10): """bias_variance_decomposition.""" x = self.transform(graphs) score_list = [] for i in range(n_bootstraps): scores = cross_val_score( self.model, x, targets, cv=cv) score_list.append(scores) score_list = np.array(score_list) mean_scores = np.mean(score_list, axis=1) std_scores = np.std(score_list, axis=1) return mean_scores, std_scores
Example #15
Source File: normalizations.py From pytorch-mri-segmentation-3D with MIT License | 5 votes |
def applyInSubjectNormalize(img): m = np.mean(img[img != 0]) s = np.std(img[img != 0]) img = (img - m) / s return img
Example #16
Source File: test_filter.py From pfilter with MIT License | 5 votes |
def test_gaussian_noise(): np.random.seed(2012) for shape in [10, 10], [100, 1000], [500, 50]: val = np.random.normal(0, 10) x = np.full(shape, val) noisy = gaussian_noise(x, np.ones(shape[1])) assert (np.mean(noisy) - np.mean(x)) ** 2 < 1.0 assert (np.std(noisy) - 1.0) ** 2 < 0.1 noisy = gaussian_noise(x, np.full(shape[1], 10.0)) assert (np.std(noisy) - 10.0) ** 2 < 0.1
Example #17
Source File: mujoco_dset.py From lirpg with MIT License | 5 votes |
def __init__(self, expert_path, train_fraction=0.7, traj_limitation=-1, randomize=True): traj_data = np.load(expert_path) if traj_limitation < 0: traj_limitation = len(traj_data['obs']) obs = traj_data['obs'][:traj_limitation] acs = traj_data['acs'][:traj_limitation] def flatten(x): # x.shape = (E,), or (E, L, D) _, size = x[0].shape episode_length = [len(i) for i in x] y = np.zeros((sum(episode_length), size)) start_idx = 0 for l, x_i in zip(episode_length, x): y[start_idx:(start_idx+l)] = x_i start_idx += l return y self.obs = np.array(flatten(obs)) self.acs = np.array(flatten(acs)) self.rets = traj_data['ep_rets'][:traj_limitation] self.avg_ret = sum(self.rets)/len(self.rets) self.std_ret = np.std(np.array(self.rets)) if len(self.acs) > 2: self.acs = np.squeeze(self.acs) assert len(self.obs) == len(self.acs) self.num_traj = min(traj_limitation, len(traj_data['obs'])) self.num_transition = len(self.obs) self.randomize = randomize self.dset = Dset(self.obs, self.acs, self.randomize) # for behavior cloning self.train_set = Dset(self.obs[:int(self.num_transition*train_fraction), :], self.acs[:int(self.num_transition*train_fraction), :], self.randomize) self.val_set = Dset(self.obs[int(self.num_transition*train_fraction):, :], self.acs[int(self.num_transition*train_fraction):, :], self.randomize) self.log_info()
Example #18
Source File: video_metrics.py From fine-lm with MIT License | 5 votes |
def compute_all_metrics_statistics(all_results): """Computes statistics of metrics across multiple decodings.""" statistics = {} for key in all_results[0].keys(): values = [result[key] for result in all_results] values = np.vstack(values) statistics[key + "_MEAN"] = np.mean(values, axis=0) statistics[key + "_STD"] = np.std(values, axis=0) statistics[key + "_MIN"] = np.min(values, axis=0) statistics[key + "_MAX"] = np.max(values, axis=0) return statistics
Example #19
Source File: normalizations.py From pytorch-mri-segmentation-3D with MIT License | 5 votes |
def applyGlobalNormalize(img, postfix, main_folder_path = '../../Data/MS2017b/'): #subtract by dataset mean and divide by pixel standard deviation means = np.load(main_folder_path + 'extra_data/mean' + postfix + '.npy') stds = np.load(main_folder_path + 'extra_data/std' + postfix + '.npy') img = (img - means) / (stds + 0.000001) return img
Example #20
Source File: inception_score.py From ArtGAN with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_inception_score(images, splits=10, get_split=False): assert (type(images) == list) assert (type(images[0]) == np.ndarray) assert (len(images[0].shape) == 3) assert (np.max(images[0]) > 10) assert (np.min(images[0]) >= 0.0) inps = [] for img in images: img = img.astype(np.float32) inps.append(np.expand_dims(img, 0)) bs = 100 with tf.Session() as sess: preds = [] n_batches = int(math.ceil(float(len(inps)) / float(bs))) for i in range(n_batches): sys.stdout.write(".") sys.stdout.flush() inp = inps[(i * bs):min((i + 1) * bs, len(inps))] inp = np.concatenate(inp, 0) pred = sess.run(softmax, {'ExpandDims:0': inp}) preds.append(pred) preds = np.concatenate(preds, 0) scores = [] objectness = [] diversity = [] for i in range(splits): part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) o = -part * np.log(part) d = -part * np.log(np.expand_dims(np.mean(part, 0), 0)) kl = np.mean(np.sum(kl, 1)) objectness.append(np.exp(np.mean(np.sum(o, 1)))) diversity.append(np.exp(np.mean(np.sum(d, 1)))) scores.append(np.exp(kl)) if get_split: return np.mean(scores), np.std(scores), np.mean(objectness), np.mean(diversity) return np.mean(scores), np.std(scores) # This function is called automatically.
Example #21
Source File: train_ac_exploration_f18.py From cs294-112_hws with MIT License | 5 votes |
def estimate_advantage(self, ob_no, next_ob_no, re_n, terminal_n): """ Estimates the advantage function value for each timestep. let sum_of_path_lengths be the sum of the lengths of the paths sampled from Agent.sample_trajectories arguments: ob_no: shape: (sum_of_path_lengths, ob_dim) next_ob_no: shape: (sum_of_path_lengths, ob_dim). The observation after taking one step forward re_n: length: sum_of_path_lengths. Each element in re_n is a scalar containing the reward for each timestep terminal_n: length: sum_of_path_lengths. Each element in terminal_n is either 1 if the episode ended at that timestep of 0 if the episode did not end returns: adv_n: shape: (sum_of_path_lengths). A single vector for the estimated advantages whose length is the sum of the lengths of the paths """ next_values_n = self.sess.run(self.critic_prediction, feed_dict={self.sy_ob_no: next_ob_no}) q_n = re_n + self.gamma * next_values_n * (1-terminal_n) curr_values_n = self.sess.run(self.critic_prediction, feed_dict={self.sy_ob_no: ob_no}) adv_n = q_n - curr_values_n if self.normalize_advantages: adv_n = (adv_n - np.mean(adv_n)) / (np.std(adv_n) + 1e-8) return adv_n
Example #22
Source File: train_ac_exploration_f18.py From cs294-112_hws with MIT License | 5 votes |
def sample_action(self, policy_parameters): """ Constructs a symbolic operation for stochastically sampling from the policy distribution arguments: policy_parameters if discrete: logits of a categorical distribution over actions sy_logits_na: (batch_size, self.ac_dim) if continuous: (mean, log_std) of a Gaussian distribution over actions sy_mean: (batch_size, self.ac_dim) sy_logstd: (self.ac_dim,) returns: sy_sampled_ac: if discrete: (batch_size) if continuous: (batch_size, self.ac_dim) Hint: for the continuous case, use the reparameterization trick: The output from a Gaussian distribution with mean 'mu' and std 'sigma' is mu + sigma * z, z ~ N(0, I) This reduces the problem to just sampling z. (Hint: use tf.random_normal!) """ if self.discrete: sy_logits_na = policy_parameters sy_sampled_ac = tf.squeeze(tf.multinomial(sy_logits_na, num_samples=1), axis=1) else: sy_mean, sy_logstd = policy_parameters sy_sampled_ac = sy_mean + tf.exp(sy_logstd) * tf.random_normal(tf.shape(sy_mean), 0, 1) return sy_sampled_ac
Example #23
Source File: test_std.py From differential-privacy-library with MIT License | 5 votes |
def test_no_params(self): a = np.array([1, 2, 3]) with self.assertWarns(PrivacyLeakWarning): res = std(a) self.assertIsNotNone(res)
Example #24
Source File: train_policy.py From cs294-112_hws with MIT License | 5 votes |
def build_policy(x, h, output_size, scope, n_layers, size, gru_size, recurrent=True, activation=tf.tanh, output_activation=None): """ build recurrent policy arguments: x: placeholder variable for the input, which has dimension (batch_size, history, input_size) h: placeholder variable for the hidden state, which has dimension (batch_size, gru_size) output_size: size of the output layer, same as action dimension scope: variable scope of the network n_layers: number of hidden layers (not counting recurrent units) size: dimension of the hidden layer in the encoder gru_size: dimension of the recurrent hidden state if there is one recurrent: if the network should be recurrent or feedforward activation: activation of the hidden layers output_activation: activation of the ouput layers returns: output placeholder of the network (the result of a forward pass) n.b. we predict both the mean and std of the gaussian policy, and we don't want the std to start off too large initialize the last layer of the policy with a guassian init of mean 0 and std 0.01 """ with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): if recurrent: x, h = build_rnn(x, h, gru_size, scope, n_layers, size, activation=activation, output_activation=activation) else: x = tf.reshape(x, (-1, x.get_shape()[1]*x.get_shape()[2])) x = build_mlp(x, gru_size, scope, n_layers + 1, size, activation=activation, output_activation=activation) x = tf.layers.dense(x, output_size, activation=output_activation, kernel_initializer=tf.initializers.truncated_normal(mean=0.0, stddev=0.01), bias_initializer=tf.zeros_initializer(), name='decoder') return x, h
Example #25
Source File: test_std.py From differential-privacy-library with MIT License | 5 votes |
def test_no_epsilon(self): a = np.array([1, 2, 3]) self.assertIsNotNone(std(a, bounds=(0, 1)))
Example #26
Source File: train_pg_f18.py From cs294-112_hws with MIT License | 5 votes |
def estimate_return(self, ob_no, re_n): """ Estimates the returns over a set of trajectories. let sum_of_path_lengths be the sum of the lengths of the paths sampled from Agent.sample_trajectories let num_paths be the number of paths sampled from Agent.sample_trajectories arguments: ob_no: shape: (sum_of_path_lengths, ob_dim) re_n: length: num_paths. Each element in re_n is a numpy array containing the rewards for the particular path returns: q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values whose length is the sum of the lengths of the paths adv_n: shape: (sum_of_path_lengths). A single vector for the estimated advantages whose length is the sum of the lengths of the paths """ q_n = self.sum_of_rewards(re_n) adv_n = self.compute_advantage(ob_no, q_n) #====================================================================================# # ----------PROBLEM 3---------- # Advantage Normalization #====================================================================================# if self.normalize_advantages: # On the next line, implement a trick which is known empirically to reduce variance # in policy gradient methods: normalize adv_n to have mean zero and std=1. # YOUR_CODE_HERE adv_n = normalize(adv_n) return q_n, adv_n
Example #27
Source File: train_pg_f18.py From cs294-112_hws with MIT License | 5 votes |
def compute_advantage(self, ob_no, q_n): """ Computes advantages by (possibly) subtracting a baseline from the estimated Q values let sum_of_path_lengths be the sum of the lengths of the paths sampled from Agent.sample_trajectories let num_paths be the number of paths sampled from Agent.sample_trajectories arguments: ob_no: shape: (sum_of_path_lengths, ob_dim) q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values whose length is the sum of the lengths of the paths returns: adv_n: shape: (sum_of_path_lengths). A single vector for the estimated advantages whose length is the sum of the lengths of the paths """ #====================================================================================# # ----------PROBLEM 6---------- # Computing Baselines #====================================================================================# if self.nn_baseline: # If nn_baseline is True, use your neural network to predict reward-to-go # at each timestep for each trajectory, and save the result in a variable 'b_n' # like 'ob_no', 'ac_na', and 'q_n'. # # Hint #bl1: rescale the output from the nn_baseline to match the statistics # (mean and std) of the current batch of Q-values. (Goes with Hint # #bl2 in Agent.update_parameters. # YOUR CODE HERE b_n = self.sess.run(self.baseline_prediction, feed_dict={self.sy_ob_no:ob_no}) b_n = normalize(b_n, q_n.mean(), q_n.std()) adv_n = q_n - b_n else: adv_n = q_n.copy() return adv_n
Example #28
Source File: train_pg_f18.py From cs294-112_hws with MIT License | 5 votes |
def sample_action(self, policy_parameters): """ Constructs a symbolic operation for stochastically sampling from the policy distribution arguments: policy_parameters if discrete: logits of a categorical distribution over actions sy_logits_na: (batch_size, self.ac_dim) if continuous: (mean, log_std) of a Gaussian distribution over actions sy_mean: (batch_size, self.ac_dim) sy_logstd: (self.ac_dim,) returns: sy_sampled_ac: if discrete: (batch_size,) if continuous: (batch_size, self.ac_dim) Hint: for the continuous case, use the reparameterization trick: The output from a Gaussian distribution with mean 'mu' and std 'sigma' is mu + sigma * z, z ~ N(0, I) This reduces the problem to just sampling z. (Hint: use tf.random_normal!) """ if self.discrete: sy_logits_na = policy_parameters # YOUR_CODE_HERE sy_sampled_ac = tf.squeeze(tf.multinomial(sy_logits_na, 1), axis=1) else: sy_mean, sy_logstd = policy_parameters # YOUR_CODE_HERE sy_sampled_ac = sy_mean + tf.exp(sy_logstd) * tf.random_normal(tf.shape(sy_mean)) return sy_sampled_ac #========================================================================================# # ----------PROBLEM 2---------- #========================================================================================#
Example #29
Source File: train_ac_f18.py From cs294-112_hws with MIT License | 5 votes |
def sample_action(self, policy_parameters): """ Constructs a symbolic operation for stochastically sampling from the policy distribution arguments: policy_parameters if discrete: logits of a categorical distribution over actions sy_logits_na: (batch_size, self.ac_dim) if continuous: (mean, log_std) of a Gaussian distribution over actions sy_mean: (batch_size, self.ac_dim) sy_logstd: (self.ac_dim,) returns: sy_sampled_ac: if discrete: (batch_size) if continuous: (batch_size, self.ac_dim) Hint: for the continuous case, use the reparameterization trick: The output from a Gaussian distribution with mean 'mu' and std 'sigma' is mu + sigma * z, z ~ N(0, I) This reduces the problem to just sampling z. (Hint: use tf.random_normal!) """ if self.discrete: sy_logits_na = policy_parameters # YOUR_HW2 CODE_HERE sy_sampled_ac = tf.squeeze(tf.multinomial(sy_logits_na, 1), axis=1) else: sy_mean, sy_logstd = policy_parameters # YOUR_HW2 CODE_HERE sy_sampled_ac = sy_mean + tf.exp(sy_logstd) * tf.random_normal(tf.shape(sy_mean)) return sy_sampled_ac
Example #30
Source File: GFK.py From transferlearning with MIT License | 5 votes |
def train_pca(self, data, mu_data, std_data, subspace_dim): ''' Modified PCA function, different from the one in sklearn :param data: data matrix :param mu_data: mu :param std_data: std :param subspace_dim: dim :return: a wrapped machine object ''' t = bob.learn.linear.PCATrainer() machine, variances = t.train(data) # For re-shaping, we need to copy... variances = variances.copy() # compute variance percentage, if desired if isinstance(subspace_dim, float): cummulated = np.cumsum(variances) / np.sum(variances) for index in range(len(cummulated)): if cummulated[index] > subspace_dim: subspace_dim = index break subspace_dim = index machine.resize(machine.shape[0], subspace_dim) machine.input_subtract = mu_data machine.input_divide = std_data return machine