Python cPickle.HIGHEST_PROTOCOL Examples
The following are 30
code examples of cPickle.HIGHEST_PROTOCOL().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cPickle
, or try the search function
.
Example #1
Source File: pascal_voc.py From RetinaNet with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb
Example #2
Source File: filecache.py From cutout with MIT License | 6 votes |
def set(self, key, value, timeout=None): if timeout is None: timeout = self.default_timeout filename = self._get_filename(key) self._prune() try: fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix, dir=self._path) f = os.fdopen(fd, 'wb') try: pickle.dump(int(time() + timeout), f, 1) pickle.dump(value, f, pickle.HIGHEST_PROTOCOL) finally: f.close() rename(tmp, filename) os.chmod(filename, self._mode) except (IOError, OSError): pass
Example #3
Source File: pascal_voc.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def gt_segdb(self): """ return ground truth image regions database :return: imdb[image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] """ cache_file = os.path.join(self.cache_path, self.name + '_gt_segdb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: segdb = cPickle.load(fid) print '{} gt segdb loaded from {}'.format(self.name, cache_file) return segdb gt_segdb = [self.load_pascal_segmentation_annotation(index) for index in self.image_set_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_segdb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt segdb to {}'.format(cache_file) return gt_segdb
Example #4
Source File: cityscape_video.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def gt_segdb(self): """ return ground truth image regions database :return: imdb[image_index]['', 'flipped'] """ print("======== Starting to get gt_segdb ========") cache_file = os.path.join(self.cache_path, self.name + '_gt_segdb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: segdb = cPickle.load(fid) print '========= {} gt segdb loaded from {}'.format(self.name, cache_file) return segdb print("======== Starting to create gt_segdb ======") gt_segdb = [] for index in tqdm(self.image_set_index): gt_segdb.append(self.load_segdb_from_index(index)) # gt_segdb = [self.load_segdb_from_index(index) for index in self.image_set_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_segdb, fid, cPickle.HIGHEST_PROTOCOL) print '========= Wrote gt segdb to {}'.format(cache_file) return gt_segdb
Example #5
Source File: pascal_voc.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def gt_roidb(self): """ return ground truth image regions database :return: imdb[image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self.load_pascal_annotation(index) for index in self.image_set_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb
Example #6
Source File: randomtags.py From jingwei with MIT License | 6 votes |
def process(options, workingCollection, annotationName, outputpkl): rootpath = options.rootpath overwrite = options.overwrite resultfile = os.path.join(outputpkl) if checkToSkip(resultfile, overwrite): return 0 concepts = readConcepts(workingCollection, annotationName, rootpath) id_images = readImageSet(workingCollection, workingCollection, rootpath) tagmatrix = np.random.rand(len(id_images), len(concepts)) # save results in pkl format printStatus(INFO, "Dump results in pkl format at %s" % resultfile) makedirsforfile(resultfile) with open(resultfile, 'w') as f: pickle.dump({'concepts':concepts, 'id_images':map(int, id_images), 'scores':tagmatrix}, f, pickle.HIGHEST_PROTOCOL)
Example #7
Source File: pascal_voc.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def selective_search_roidb(self, gt_roidb, append_gt=False): """ get selective search roidb and ground truth roidb :param gt_roidb: ground truth roidb :param append_gt: append ground truth :return: roidb of selective search """ cache_file = os.path.join(self.cache_path, self.name + '_ss_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} ss roidb loaded from {}'.format(self.name, cache_file) return roidb if append_gt: print 'appending ground truth annotations' ss_roidb = self.load_selective_search_roidb(gt_roidb) roidb = IMDB.merge_roidbs(gt_roidb, ss_roidb) else: roidb = self.load_selective_search_roidb(gt_roidb) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote ss roidb to {}'.format(cache_file) return roidb
Example #8
Source File: cityscape.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def gt_segdb(self): """ return ground truth image regions database :return: imdb[image_index]['', 'flipped'] """ cache_file = os.path.join(self.cache_path, self.name + '_gt_segdb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: segdb = cPickle.load(fid) print '{} gt segdb loaded from {}'.format(self.name, cache_file) return segdb # gt_segdb = [self.load_segdb_from_index(index) for index in self.image_set_index] print("======== Load segmentation ground truth data =======") gt_segdb = [] for index in tqdm(self.image_set_index): gt_segdb.append(self.load_segdb_from_index(index)) with open(cache_file, 'wb') as fid: cPickle.dump(gt_segdb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt segdb to {}'.format(cache_file) return gt_segdb
Example #9
Source File: pascal_voc.py From TFFRCNN with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb
Example #10
Source File: coco.py From TFFRCNN with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = osp.join(self.cache_path, self.name + '_gt_roidb.pkl') if osp.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self._load_coco_annotation(index) for index in self._image_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb
Example #11
Source File: kittivoc.py From TFFRCNN with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest, aka, the annotations. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb
Example #12
Source File: cache.py From jbox with MIT License | 6 votes |
def set(self, key, value, timeout=None): if timeout is None: timeout = int(time() + self.default_timeout) elif timeout != 0: timeout = int(time() + timeout) filename = self._get_filename(key) self._prune() try: fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix, dir=self._path) with os.fdopen(fd, 'wb') as f: pickle.dump(timeout, f, 1) pickle.dump(value, f, pickle.HIGHEST_PROTOCOL) rename(tmp, filename) os.chmod(filename, self._mode) except (IOError, OSError): return False else: return True
Example #13
Source File: plot.py From improved_wgan_training with MIT License | 6 votes |
def flush(): prints = [] for name, vals in _since_last_flush.items(): prints.append("{}\t{}".format(name, np.mean(vals.values()))) _since_beginning[name].update(vals) x_vals = np.sort(_since_beginning[name].keys()) y_vals = [_since_beginning[name][x] for x in x_vals] plt.clf() plt.plot(x_vals, y_vals) plt.xlabel('iteration') plt.ylabel(name) plt.savefig(name.replace(' ', '_')+'.jpg') print "iter {}\t{}".format(_iter[0], "\t".join(prints)) _since_last_flush.clear() with open('log.pkl', 'wb') as f: pickle.dump(dict(_since_beginning), f, pickle.HIGHEST_PROTOCOL)
Example #14
Source File: test_versionable_class.py From avocado-vt with GNU General Public License v2.0 | 6 votes |
def test_pickleing(self): """ Test pickling for example save vm env. """ m = factory(AA, system_version=0, qemu_version=0)() mm = factory(BB, qemu_version=3)() f = open("/tmp/pick", "w+") cPickle.dump(m, f, cPickle.HIGHEST_PROTOCOL) cPickle.dump(mm, f, cPickle.HIGHEST_PROTOCOL) f.close() # Delete classes for ensure that pickel works correctly. name = m.__class__.__name__ del m del globals()[name] name = mm.__class__.__name__ del mm del globals()[name] f = open("/tmp/pick", "r+") c = cPickle.load(f) cc = cPickle.load(f) f.close()
Example #15
Source File: test_deque.py From ironpython2 with Apache License 2.0 | 5 votes |
def test_pickle(self): d = deque(xrange(200)) for i in range(pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(d, i) e = pickle.loads(s) self.assertNotEqual(id(d), id(e)) self.assertEqual(list(d), list(e)) ## def test_pickle_recursive(self): ## d = deque('abc') ## d.append(d) ## for i in range(pickle.HIGHEST_PROTOCOL + 1): ## e = pickle.loads(pickle.dumps(d, i)) ## self.assertNotEqual(id(d), id(e)) ## self.assertEqual(id(e), id(e[-1]))
Example #16
Source File: pickletester.py From ironpython2 with Apache License 2.0 | 5 votes |
def test_highest_protocol(self): # Of course this needs to be changed when HIGHEST_PROTOCOL changes. self.assertEqual(self.module.HIGHEST_PROTOCOL, 2)
Example #17
Source File: dbshelve.py From ironpython2 with Apache License 2.0 | 5 votes |
def __init__(self, dbenv=None): self.db = db.DB(dbenv) self._closed = True if HIGHEST_PROTOCOL: self.protocol = HIGHEST_PROTOCOL else: self.protocol = 1
Example #18
Source File: cache.py From lambda-packs with MIT License | 5 votes |
def set(self, key, value, timeout=None, mgmt_element=False): # Management elements have no timeout if mgmt_element: timeout = 0 # Don't prune on management element update, to avoid loop else: self._prune() timeout = self._normalize_timeout(timeout) filename = self._get_filename(key) try: fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix, dir=self._path) with os.fdopen(fd, 'wb') as f: pickle.dump(timeout, f, 1) pickle.dump(value, f, pickle.HIGHEST_PROTOCOL) rename(tmp, filename) os.chmod(filename, self._mode) except (IOError, OSError): return False else: # Management elements should not count towards threshold if not mgmt_element: self._update_count(delta=1) return True
Example #19
Source File: corpus.py From glove-python with Apache License 2.0 | 5 votes |
def save(self, filename): with open(filename, 'wb') as savefile: pickle.dump((self.dictionary, self.matrix), savefile, protocol=pickle.HIGHEST_PROTOCOL)
Example #20
Source File: cache.py From lambda-packs with MIT License | 5 votes |
def add(self, key, value, timeout=None): expires = self._normalize_timeout(timeout) self._prune() item = (expires, pickle.dumps(value, pickle.HIGHEST_PROTOCOL)) if key in self._cache: return False self._cache.setdefault(key, item) return True
Example #21
Source File: cache.py From lambda-packs with MIT License | 5 votes |
def set(self, key, value, timeout=None): expires = self._normalize_timeout(timeout) self._prune() self._cache[key] = (expires, pickle.dumps(value, pickle.HIGHEST_PROTOCOL)) return True
Example #22
Source File: pipeline.py From skutil with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _save_internal(self, **kwargs): loc = kwargs.pop('location') model_loc = kwargs.pop('model_location') # first, save the estimator... if it's there ends_in_h2o = isinstance(self._final_estimator, H2OEstimator) if ends_in_h2o: force = kwargs.pop('force', False) self.model_loc_ = h2o.save_model(model=self._final_estimator, path=model_loc, force=force) # set the _final_estimator to None just for pickling self.est_name_ = self.steps[-1][0] # let's keep a pointer to the last step, so # after the pickling we can reassign it to retain state last_step_ = self.steps[-1] self.steps[-1] = None # now save the rest of things... with open(loc, 'wb') as output: pickle.dump(self, output, pickle.HIGHEST_PROTOCOL) # after pickle, we can add the last_step_ back in. # this allows re-use/re-predict after saving to disk if ends_in_h2o: self.steps[-1] = last_step_
Example #23
Source File: simple.py From cachelib with BSD 3-Clause "New" or "Revised" License | 5 votes |
def add(self, key, value, timeout=None): expires = self._normalize_timeout(timeout) self._prune() item = (expires, pickle.dumps(value, pickle.HIGHEST_PROTOCOL)) if key in self._cache: return False self._cache.setdefault(key, item) return True
Example #24
Source File: simple.py From cachelib with BSD 3-Clause "New" or "Revised" License | 5 votes |
def set(self, key, value, timeout=None): expires = self._normalize_timeout(timeout) self._prune() self._cache[key] = (expires, pickle.dumps(value, pickle.HIGHEST_PROTOCOL)) return True
Example #25
Source File: file.py From cachelib with BSD 3-Clause "New" or "Revised" License | 5 votes |
def set(self, key, value, timeout=None, mgmt_element=False): # Management elements have no timeout if mgmt_element: timeout = 0 # Don't prune on management element update, to avoid loop else: self._prune() timeout = self._normalize_timeout(timeout) filename = self._get_filename(key) try: fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix, dir=self._path) with os.fdopen(fd, 'wb') as f: pickle.dump(timeout, f, 1) pickle.dump(value, f, pickle.HIGHEST_PROTOCOL) os.replace(tmp, filename) os.chmod(filename, self._mode) except (IOError, OSError): return False else: # Management elements should not count towards threshold if not mgmt_element: self._update_count(delta=1) return True
Example #26
Source File: utils.py From DOTA_models with Apache License 2.0 | 5 votes |
def save_variables(pickle_file_name, var, info, overwrite = False): if fu.exists(pickle_file_name) and overwrite == False: raise Exception('{:s} exists and over write is false.'.format(pickle_file_name)) # Construct the dictionary assert(type(var) == list); assert(type(info) == list); d = {} for i in xrange(len(var)): d[info[i]] = var[i] with fu.fopen(pickle_file_name, 'w') as f: cPickle.dump(d, f, cPickle.HIGHEST_PROTOCOL)
Example #27
Source File: node_vectors.py From graph2vec with Apache License 2.0 | 5 votes |
def save_to_file(self, output_path): with open(output_path, 'wb') as output_file: cPickle.dump(self, output_file, cPickle.HIGHEST_PROTOCOL)
Example #28
Source File: train_val.py From pytorch-FPN with MIT License | 5 votes |
def snapshot(self, iter): net = self.net if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # Store the model snapshot filename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.pth' filename = os.path.join(self.output_dir, filename) torch.save(self.net.state_dict(), filename) print('Wrote snapshot to: {:s}'.format(filename)) # Also store some meta information, random state, etc. nfilename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.pkl' nfilename = os.path.join(self.output_dir, nfilename) # current state of numpy random st0 = np.random.get_state() # current position in the database cur = self.data_layer._cur # current shuffled indexes of the database perm = self.data_layer._perm # current position in the validation database cur_val = self.data_layer_val._cur # current shuffled indexes of the validation database perm_val = self.data_layer_val._perm # Dump the meta info with open(nfilename, 'wb') as fid: pickle.dump(st0, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(cur, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(perm, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(cur_val, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(perm_val, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(iter, fid, pickle.HIGHEST_PROTOCOL) return filename, nfilename
Example #29
Source File: imdb.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def evaluate_detections(self, detections, **kwargs): cache_path = os.path.join(self._root_path, 'cache', '{}_{}.pkl'.format(self._name, 'detections')) logger.info('saving cache {}'.format(cache_path)) with open(cache_path, 'wb') as fid: pickle.dump(detections, fid, pickle.HIGHEST_PROTOCOL) self._evaluate_detections(detections, **kwargs)
Example #30
Source File: minidb_to_pickle.py From VMZ with Apache License 2.0 | 5 votes |
def ConvertModel(args): meta_net_def = pred_exp.load_from_db(args.load_model_path, args.db_type) net = core.Net( pred_utils.GetNet(meta_net_def, predictor_constants.PREDICT_NET_TYPE) ) init_net = core.Net( pred_utils. GetNet(meta_net_def, predictor_constants.GLOBAL_INIT_NET_TYPE) ) init_net.RunAllOnGPU() assert workspace.RunNetOnce(init_net) pred_params = list(set(net.Proto().external_input) - set(['gpu_0/data'])) save_params = [str(param) for param in pred_params] save_blobs = {} for param in save_params: scoped_blob_name = str(param) unscoped_blob_name = unscope_name(scoped_blob_name) if unscoped_blob_name not in save_blobs: save_blobs[unscoped_blob_name] = workspace.FetchBlob( scoped_blob_name) log.info( '{:s} -> {:s}'.format(scoped_blob_name, unscoped_blob_name)) log.info('saving weights to {}'.format(args.save_model_path)) with open(args.save_model_path, 'w') as fwrite: pickle.dump(dict(blobs=save_blobs), fwrite, pickle.HIGHEST_PROTOCOL)