Python numpy.asanyarray() Examples
The following are 30
code examples of numpy.asanyarray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def image_copy(img, dataobj=Ellipsis, affine=Ellipsis, image_type=None): ''' image_copy(image) copies the given image and returns the new object; the affine, header, and dataobj members are duplicated so that changes will not change the original image. The following optional arguments may be given to overwrites part of the new image; in each case, the default value (Ellipsis) specifies that no update should be made. * dataobj (default: Ellipsis) may overwrite the new image's dataobj object. * affine (default: Ellipsis) may overwrite the new image's affine transformation matrix. ''' dataobj = np.array(img.dataobj) if dataobj is Ellipsis else np.asanyarray(dataobj) imspec = to_image_spec(img) imtype = to_image_type(img if image_type is None else image_type) affine = imspec['affine'] if affine is Ellipsis else affine imspec['affine'] = affine return imtype.create(dataobj, imspec)
Example #2
Source File: misc.py From smriprep with Apache License 2.0 | 6 votes |
def apply_lut(in_dseg, lut, newpath=None): """Map the input discrete segmentation to a new label set (lookup table, LUT).""" import numpy as np import nibabel as nb from nipype.utils.filemanip import fname_presuffix if newpath is None: from os import getcwd newpath = getcwd() out_file = fname_presuffix(in_dseg, suffix='_dseg', newpath=newpath) lut = np.array(lut, dtype='int16') segm = nb.load(in_dseg) hdr = segm.header.copy() hdr.set_data_dtype('int16') segm.__class__(lut[np.asanyarray(segm.dataobj, dtype=int)].astype('int16'), segm.affine, hdr).to_filename(out_file) return out_file
Example #3
Source File: quantile.py From mars with Apache License 2.0 | 6 votes |
def _call_series(self, a, inputs): if isinstance(self._q, TENSOR_TYPE): q_val = self._q index_val = pd.Index([], dtype=q_val.dtype) store_index_value = False else: q_val = np.asanyarray(self._q) index_val = pd.Index(q_val) store_index_value = True # get dtype by tensor a_t = astensor(a) self._dtype = dtype = tensor_quantile( a_t, self._q, interpolation=self._interpolation, handle_non_numeric=not self._numeric_only).dtype if q_val.ndim == 0: return self.new_scalar(inputs, dtype=dtype) else: return self.new_series( inputs, shape=q_val.shape, dtype=dtype, index_value=parse_index(index_val, a, q_val, self._interpolation, type(self).__name__, store_data=store_index_value), name=a.name)
Example #4
Source File: managers.py From recruit with Apache License 2.0 | 6 votes |
def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = (np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if isinstance(indexer, slice) else np.asanyarray(indexer, dtype='int64')) n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception('Indices must be nonzero and less than ' 'the axis length') new_labels = self.axes[axis].take(indexer) return self.reindex_indexer(new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True)
Example #5
Source File: common_slow.py From pyscf with Apache License 2.0 | 6 votes |
def format_mask(x): """ Formats a mask into a readable string. Args: x (ndarray): an array with the mask; Returns: A readable string with the mask. """ x = numpy.asanyarray(x) if len(x) == 0: return "(empty)" if x.dtype == bool: x = numpy.argwhere(x)[:, 0] grps = tuple(list(g) for _, g in groupby(x, lambda n, c=count(): n-next(c))) return ",".join("{:d}-{:d}".format(i[0], i[-1]) if len(i) > 1 else "{:d}".format(i[0]) for i in grps)
Example #6
Source File: rhf_slow.py From pyscf with Apache License 2.0 | 6 votes |
def vector_to_amplitudes(vectors, nocc, nmo): """ Transforms (reshapes) and normalizes vectors into amplitudes. Args: vectors (numpy.ndarray): raw eigenvectors to transform; nocc (int): number of occupied orbitals; nmo (int): the total number of orbitals; Returns: Amplitudes with the following shape: (# of roots, 2 (x or y), # of occupied orbitals, # of virtual orbitals). """ vectors = numpy.asanyarray(vectors) vectors = vectors.reshape(2, nocc, nmo-nocc, vectors.shape[1]) norm = (abs(vectors) ** 2).sum(axis=(1, 2)) norm = 2 * (norm[0] - norm[1]) vectors /= norm ** .5 return vectors.transpose(3, 0, 1, 2)
Example #7
Source File: core.py From astropy-healpix with BSD 3-Clause "New" or "Revised" License | 6 votes |
def nside_to_pixel_area(nside): """ Find the area of HEALPix pixels given the pixel dimensions of one of the 12 'top-level' HEALPix tiles. Parameters ---------- nside : int The number of pixels on the side of one of the 12 'top-level' HEALPix tiles. Returns ------- pixel_area : :class:`~astropy.units.Quantity` The area of the HEALPix pixels """ nside = np.asanyarray(nside, dtype=np.int64) _validate_nside(nside) npix = 12 * nside * nside pixel_area = 4 * math.pi / npix * u.sr return pixel_area
Example #8
Source File: krhf_slow_supercell.py From pyscf with Apache License 2.0 | 6 votes |
def vector_to_amplitudes(vectors, nocc, nmo): """ Transforms (reshapes) and normalizes vectors into amplitudes. Args: vectors (numpy.ndarray): raw eigenvectors to transform; nocc (tuple): numbers of occupied orbitals; nmo (tuple): the total numbers of AOs per k-point; Returns: Amplitudes with the following shape: (# of roots, 2 (x or y), # of kpts, # of kpts, # of occupied orbitals, # of virtual orbitals). """ if not all(i == nocc[0] for i in nocc): raise NotImplementedError("Varying occupation numbers are not implemented yet") nk = len(nocc) nocc = nocc[0] if not all(i == nmo[0] for i in nmo): raise NotImplementedError("Varying AO spaces are not implemented yet") nmo = nmo[0] vectors = numpy.asanyarray(vectors) vectors = vectors.reshape(2, nk, nk, nocc, nmo-nocc, vectors.shape[1]) norm = (abs(vectors) ** 2).sum(axis=(1, 2, 3, 4)) norm = 2 * (norm[0] - norm[1]) vectors /= norm ** .5 return vectors.transpose(5, 0, 1, 2, 3, 4)
Example #9
Source File: core.py From astropy-healpix with BSD 3-Clause "New" or "Revised" License | 6 votes |
def nside_to_pixel_resolution(nside): """ Find the resolution of HEALPix pixels given the pixel dimensions of one of the 12 'top-level' HEALPix tiles. Parameters ---------- nside : int The number of pixels on the side of one of the 12 'top-level' HEALPix tiles. Returns ------- resolution : :class:`~astropy.units.Quantity` The resolution of the HEALPix pixels See also -------- pixel_resolution_to_nside """ nside = np.asanyarray(nside, dtype=np.int64) _validate_nside(nside) return (nside_to_pixel_area(nside) ** 0.5).to(u.arcmin)
Example #10
Source File: krhf_slow.py From pyscf with Apache License 2.0 | 6 votes |
def vector_to_amplitudes(vectors, nocc, nmo): """ Transforms (reshapes) and normalizes vectors into amplitudes. Args: vectors (numpy.ndarray): raw eigenvectors to transform; nocc (tuple): numbers of occupied orbitals; nmo (int): the total number of orbitals per k-point; Returns: Amplitudes with the following shape: (# of roots, 2 (x or y), # of kpts, # of occupied orbitals, # of virtual orbitals). """ if not all(i == nocc[0] for i in nocc): raise NotImplementedError("Varying occupation numbers are not implemented yet") nk = len(nocc) nocc = nocc[0] if not all(i == nmo[0] for i in nmo): raise NotImplementedError("Varying AO spaces are not implemented yet") nmo = nmo[0] vectors = numpy.asanyarray(vectors) vectors = vectors.reshape(2, nk, nocc, nmo-nocc, vectors.shape[1]) norm = (abs(vectors) ** 2).sum(axis=(1, 2, 3)) norm = 2 * (norm[0] - norm[1]) vectors /= norm ** .5 return vectors.transpose(4, 0, 1, 2, 3)
Example #11
Source File: kproxy_supercell.py From pyscf with Apache License 2.0 | 6 votes |
def orb2ov(space, nocc, nmo): """ Converts orbital active space specification into ov-pairs space spec. Args: space (ndarray): the obital space. Basis order: [k, orb=o+v]; nocc (Iterable): the numbers of occupied orbitals per k-point; nmo (Iterable): the total numbers of orbitals per k-point; Returns: The ov space specification. Basis order: [k_o, o, k_v, v]. """ space = numpy.asanyarray(space) m = ko_mask(nocc, nmo) # [k, orb=o+v] o = space[..., m] # [k, o] v = space[..., ~m] # [k, v] return (o[..., numpy.newaxis] * v[..., numpy.newaxis, :]).reshape(space.shape[:-1] + (-1,)) # [k_o, o, k_v, v]
Example #12
Source File: core.py From astropy-healpix with BSD 3-Clause "New" or "Revised" License | 6 votes |
def nside_to_npix(nside): """ Find the number of pixels corresponding to a HEALPix resolution. Parameters ---------- nside : int The number of pixels on the side of one of the 12 'top-level' HEALPix tiles. Returns ------- npix : int The number of pixels in the HEALPix map. """ nside = np.asanyarray(nside, dtype=np.int64) _validate_nside(nside) return 12 * nside ** 2
Example #13
Source File: kproxy_supercell.py From pyscf with Apache License 2.0 | 6 votes |
def supercell_space_required(transform_oo, transform_vv, final_space): """ For a given orbital transformation and a given `ov` mask in the transformed space, calculates a minimal `ov` mask in the original space required to achieve this transform. Args: transform_oo (ndarray): the transformation in the occupied space; transform_vv (ndarray): the transformation in the virtual space; final_space (ndarray): the final `ov` space. Basis order: [k_o, o, k_v, v]; Returns: The initial active space. Basis order: [k_o, o, k_v, v]. """ final_space = numpy.asanyarray(final_space) final_space = final_space.reshape(final_space.shape[:-1] + (transform_oo.shape[1], transform_vv.shape[1])) result = einsum( "ao,bv,...ov->...ab", (transform_oo.toarray() != 0).astype(int), (transform_vv.toarray() != 0).astype(int), final_space.astype(int), ) != 0 return result.reshape(result.shape[:-2] + (-1,))
Example #14
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def apply_affine(aff, coords): ''' apply_affine(affine, coords) yields the result of applying the given affine transformation to the given coordinate or coordinates. This function expects coords to be a (dims X n) matrix but if the first dimension is neither 2 nor 3, coords.T is used; i.e.: apply_affine(affine3x3, coords2xN) ==> newcoords2xN apply_affine(affine4x4, coords3xN) ==> newcoords3xN apply_affine(affine3x3, coordsNx2) ==> newcoordsNx2 (for N != 2) apply_affine(affine4x4, coordsNx3) ==> newcoordsNx3 (for N != 3) ''' if aff is None: return coords (coords,tr) = (np.asanyarray(coords), False) if len(coords.shape) == 1: return np.squeeze(apply_affine(np.reshape(coords, (-1,1)), aff)) elif len(coords.shape) > 2: raise ValueError('cannot apply affine to ND-array for N > 2') if len(coords) == 2: aff = to_affine(aff, 2) elif len(coords) == 3: aff = to_affine(aff, 3) else: (coords,aff,tr) = (coords.T, to_affine(aff, coords.shape[1]), True) r = np.dot(aff, np.vstack([coords, np.ones([1,coords.shape[1]])]))[:-1] return r.T if tr else r
Example #15
Source File: arraysetops.py From lambda-packs with MIT License | 5 votes |
def _unique1d(ar, return_index=False, return_inverse=False, return_counts=False): """ Find the unique elements of an array, ignoring shape. """ ar = np.asanyarray(ar).flatten() optional_indices = return_index or return_inverse if optional_indices: perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') aux = ar[perm] else: ar.sort() aux = ar mask = np.empty(aux.shape, dtype=np.bool_) mask[:1] = True mask[1:] = aux[1:] != aux[:-1] ret = (aux[mask],) if return_index: ret += (perm[mask],) if return_inverse: imask = np.cumsum(mask) - 1 inv_idx = np.empty(mask.shape, dtype=np.intp) inv_idx[perm] = imask ret += (inv_idx,) if return_counts: idx = np.concatenate(np.nonzero(mask) + ([mask.size],)) ret += (np.diff(idx),) return ret
Example #16
Source File: managers.py From recruit with Apache License 2.0 | 5 votes |
def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return ('slice', slice_or_indexer, libinternals.slice_len(slice_or_indexer, length)) elif (isinstance(slice_or_indexer, np.ndarray) and slice_or_indexer.dtype == np.bool_): return 'mask', slice_or_indexer, slice_or_indexer.sum() else: indexer = np.asanyarray(slice_or_indexer, dtype=np.int64) if not allow_fill: indexer = maybe_convert_indices(indexer, length) return 'fancy', indexer, len(indexer)
Example #17
Source File: mcbs.py From westpa with MIT License | 5 votes |
def bootstrap_ci(estimator, data, alpha, n_sets=None, sort=numpy.msort, eargs=(), ekwargs={}): '''Perform a Monte Carlo bootstrap of a (1-alpha) confidence interval for the given ``estimator``. Returns (fhat, ci_lower, ci_upper), where fhat is the result of ``estimator(data, *eargs, **ekwargs)``, and ``ci_lower`` and ``ci_upper`` are the lower and upper bounds of the surrounding confidence interval, calculated by calling ``estimator(syndata, *eargs, **ekwargs)`` on each synthetic data set ``syndata``. If ``n_sets`` is provided, that is the number of synthetic data sets generated, otherwise an appropriate size is selected automatically (see ``calc_mcbs_nsets()``). ``sort``, if given, is applied to sort the results of calling ``estimator`` on each synthetic data set prior to obtaining the confidence interval. This function must sort on the last index. Individual entries in synthetic data sets are selected by the first index of ``data``, allowing this function to be used on arrays of multidimensional data. Returns (fhat, lb, ub, ub-lb, abs((ub-lb)/fhat), and max(ub-fhat,fhat-lb)) (that is, the estimated value, the lower and upper bounds of the confidence interval, the width of the confidence interval, the relative width of the confidence interval, and the symmetrized error bar of the confidence interval).''' data = numpy.asanyarray(data) fhat = numpy.squeeze(estimator(data, *eargs, **ekwargs)) n_sets = n_sets or calc_mcbs_nsets(alpha) fsynth = numpy.empty((n_sets,), dtype=fhat.dtype) try: return bootstrap_ci_ll(estimator, data, alpha, n_sets or calc_mcbs_nsets(alpha), fsynth, sort, eargs, ekwargs, fhat) finally: del fsynth
Example #18
Source File: numeric.py From lambda-packs with MIT License | 5 votes |
def asfortranarray(a, dtype=None): """ Return an array laid out in Fortran order in memory. Parameters ---------- a : array_like Input array. dtype : str or dtype object, optional By default, the data-type is inferred from the input data. Returns ------- out : ndarray The input `a` in Fortran, or column-major, order. See Also -------- ascontiguousarray : Convert input to a contiguous (C order) array. asanyarray : Convert input to an ndarray with either row or column-major memory order. require : Return an ndarray that satisfies requirements. ndarray.flags : Information about the memory layout of the array. Examples -------- >>> x = np.arange(6).reshape(2,3) >>> y = np.asfortranarray(x) >>> x.flags['F_CONTIGUOUS'] False >>> y.flags['F_CONTIGUOUS'] True """ return array(a, dtype, copy=False, order='F', ndmin=1)
Example #19
Source File: test_subclassing.py From recruit with Apache License 2.0 | 5 votes |
def __new__(cls,arr,info={}): x = np.asanyarray(arr).view(cls) x.info = info.copy() return x
Example #20
Source File: mstats_basic.py From lambda-packs with MIT License | 5 votes |
def _chk_asarray(a, axis): # Always returns a masked array, raveled for axis=None a = ma.asanyarray(a) if axis is None: a = ma.ravel(a) outaxis = 0 else: outaxis = axis return a, outaxis
Example #21
Source File: mstats_basic.py From lambda-packs with MIT License | 5 votes |
def _chk_size(a,b): a = ma.asanyarray(a) b = ma.asanyarray(b) (na, nb) = (a.size, b.size) if na != nb: raise ValueError("The size of the input array should match!" " (%s <> %s)" % (na, nb)) return (a, b, na)
Example #22
Source File: _testutils.py From lambda-packs with MIT License | 5 votes |
def assert_tol_equal(a, b, rtol=1e-7, atol=0, err_msg='', verbose=True): """Assert that `a` and `b` are equal to tolerance ``atol + rtol*abs(b)``""" def compare(x, y): return np.allclose(x, y, rtol=rtol, atol=atol) a, b = np.asanyarray(a), np.asanyarray(b) header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol) np.testing.utils.assert_array_compare(compare, a, b, err_msg=str(err_msg), verbose=verbose, header=header) #------------------------------------------------------------------------------ # Comparing function values at many data points at once, with helpful # error reports #------------------------------------------------------------------------------
Example #23
Source File: constants.py From lambda-packs with MIT License | 5 votes |
def lambda2nu(lambda_): """ Convert wavelength to optical frequency Parameters ---------- lambda_ : array_like Wavelength(s) to be converted. Returns ------- nu : float or array of floats Equivalent optical frequency. Notes ----- Computes ``nu = c / lambda`` where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second. Examples -------- >>> from scipy.constants import lambda2nu, speed_of_light >>> lambda2nu(np.array((1, speed_of_light))) array([ 2.99792458e+08, 1.00000000e+00]) """ return _np.asanyarray(c) / lambda_
Example #24
Source File: constants.py From lambda-packs with MIT License | 5 votes |
def nu2lambda(nu): """ Convert optical frequency to wavelength. Parameters ---------- nu : array_like Optical frequency to be converted. Returns ------- lambda : float or array of floats Equivalent wavelength(s). Notes ----- Computes ``lambda = c / nu`` where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second. Examples -------- >>> from scipy.constants import nu2lambda, speed_of_light >>> nu2lambda(np.array((1, speed_of_light))) array([ 2.99792458e+08, 1.00000000e+00]) """ return c / _np.asanyarray(nu)
Example #25
Source File: mstats_basic.py From lambda-packs with MIT License | 5 votes |
def _chk2_asarray(a, b, axis): a = ma.asanyarray(a) b = ma.asanyarray(b) if axis is None: a = ma.ravel(a) b = ma.ravel(b) outaxis = 0 else: outaxis = axis return a, b, outaxis
Example #26
Source File: files.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def cifti_split(cii, label=('lh', 'rh', 'rest'), subject=None, hemi=None, null=np.nan): ''' cifti_split(cii, label) yields the rows or columns of the given cifti file that correspond to the given label (see below). cifti_split(cii) is equivalent to cifti_split(cii, ('lh', 'rh', 'rest')). The label argument may be any of the following: * a valid CIFTI label name such as 'CIFTI_STRUCTURE_CEREBELLUM' or 'CIFTI_STRUCTURE_CORTEX_LEFT'; * an abbreviated name such as 'cerebellum' for 'CIFTI_STRUCTURE_CEREBELLUM'. * the abbreviations 'lh' and 'rh' which stand for 'CIFTI_STRUCTURE_CORTEX_LEFT' and 'CIFTI_STRUCTURE_CORTEX_RIGHT'; * the special keyword 'rest', which represents all the rows/columns not collected by any other instruction ('rest', by itself, results in the whole matrix being returned); or * A tuple of the above, indicating that each of the items listed should be returned sequentially in a tuple. The following optional arguments may be given: * subject (default: None) may specify the subject * hemi (default: None) can specify the hemisphere object that ''' dat = np.asanyarray(cii.dataobj if is_image(cii) else cii) n = dat.shape[-1] atlas = cifti_split._size_data.get(n, None) if atlas is None: raise ValueError('cannot split cifti with size %d' % n) if atlas not in cifti_split._atlas_cache: patt = os.path.join('data', 'fs_LR', '%s.atlasroi.%dk_fs_LR.shape.gii') lgii = nib.load(os.path.join(library_path(), patt % ('lh', atlas))) rgii = nib.load(os.path.join(library_path(), patt % ('rh', atlas))) cifti_split._atlas_cache[atlas] = tuple([pimms.imm_array(gii.darrays[0].data.astype('bool')) for gii in (lgii, rgii)]) (lroi,rroi) = cifti_split._atlas_cache[atlas] (ln,lN) = (np.sum(lroi), len(lroi)) (rn,rN) = (np.sum(rroi), len(rroi)) (ldat,rdat,sdat) = [np.full(dat.shape[:-1] + (k,), null) for k in [lN, rN, n - ln - rn]] ldat[..., lroi] = dat[..., :ln] rdat[..., rroi] = dat[..., ln:(ln+rn)] sdat[...] = dat[..., (ln+rn):] if ln + rn >= n: sdat = None return (ldat, rdat, sdat)
Example #27
Source File: numeric.py From recruit with Apache License 2.0 | 5 votes |
def asfortranarray(a, dtype=None): """ Return an array (ndim >= 1) laid out in Fortran order in memory. Parameters ---------- a : array_like Input array. dtype : str or dtype object, optional By default, the data-type is inferred from the input data. Returns ------- out : ndarray The input `a` in Fortran, or column-major, order. See Also -------- ascontiguousarray : Convert input to a contiguous (C order) array. asanyarray : Convert input to an ndarray with either row or column-major memory order. require : Return an ndarray that satisfies requirements. ndarray.flags : Information about the memory layout of the array. Examples -------- >>> x = np.arange(6).reshape(2,3) >>> y = np.asfortranarray(x) >>> x.flags['F_CONTIGUOUS'] False >>> y.flags['F_CONTIGUOUS'] True Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays. """ return array(a, dtype, copy=False, order='F', ndmin=1)
Example #28
Source File: extras.py From recruit with Apache License 2.0 | 5 votes |
def ediff1d(arr, to_end=None, to_begin=None): """ Compute the differences between consecutive elements of an array. This function is the equivalent of `numpy.ediff1d` that takes masked values into account, see `numpy.ediff1d` for details. See Also -------- numpy.ediff1d : Equivalent function for ndarrays. """ arr = ma.asanyarray(arr).flat ed = arr[1:] - arr[:-1] arrays = [ed] # if to_begin is not None: arrays.insert(0, to_begin) if to_end is not None: arrays.append(to_end) # if len(arrays) != 1: # We'll save ourselves a copy of a potentially large array in the common # case where neither to_begin or to_end was given. ed = hstack(arrays) # return ed
Example #29
Source File: test_subclassing.py From recruit with Apache License 2.0 | 5 votes |
def test_subclasspreservation(self): # Checks that masked_array(...,subok=True) preserves the class. x = np.arange(5) m = [0, 0, 1, 0, 0] xinfo = [(i, j) for (i, j) in zip(x, m)] xsub = MSubArray(x, mask=m, info={'xsub':xinfo}) # mxsub = masked_array(xsub, subok=False) assert_(not isinstance(mxsub, MSubArray)) assert_(isinstance(mxsub, MaskedArray)) assert_equal(mxsub._mask, m) # mxsub = asarray(xsub) assert_(not isinstance(mxsub, MSubArray)) assert_(isinstance(mxsub, MaskedArray)) assert_equal(mxsub._mask, m) # mxsub = masked_array(xsub, subok=True) assert_(isinstance(mxsub, MSubArray)) assert_equal(mxsub.info, xsub.info) assert_equal(mxsub._mask, xsub._mask) # mxsub = asanyarray(xsub) assert_(isinstance(mxsub, MSubArray)) assert_equal(mxsub.info, xsub.info) assert_equal(mxsub._mask, m)
Example #30
Source File: test_api.py From recruit with Apache License 2.0 | 5 votes |
def test_recode_to_categories(self, codes, old, new, expected): codes = np.asanyarray(codes, dtype=np.int8) expected = np.asanyarray(expected, dtype=np.int8) old = Index(old) new = Index(new) result = _recode_for_categories(codes, old, new) tm.assert_numpy_array_equal(result, expected)