Python types.ComplexType() Examples
The following are 7
code examples of types.ComplexType().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
types
, or try the search function
.
Example #1
Source File: c_spec.py From Computable with MIT License | 6 votes |
def init_info(self): scalar_converter.init_info(self) self.type_name = 'complex' self.check_func = 'PyComplex_Check' self.c_type = 'std::complex<double>' self.return_type = 'std::complex<double>' self.to_c_return = "std::complex<double>(PyComplex_RealAsDouble(py_obj),"\ "PyComplex_ImagAsDouble(py_obj))" self.matching_types = [types.ComplexType] #---------------------------------------------------------------------------- # # List, Tuple, and Dict converters. # # Based on SCXX by Gordon McMillan #----------------------------------------------------------------------------
Example #2
Source File: recipe-577473.py From code with MIT License | 6 votes |
def assertEquals( exp, got ): """assertEquals(exp, got) Two objects test as "equal" if: * they are the same object as tested by the 'is' operator. * either object is a float or complex number and the absolute value of the difference between the two is less than 1e-8. * applying the equals operator ('==') returns True. """ from types import FloatType, ComplexType if exp is got: r = True elif ( type( exp ) in ( FloatType, ComplexType ) or type( got ) in ( FloatType, ComplexType ) ): r = abs( exp - got ) < 1e-8 else: r = ( exp == got ) if not r: print >>sys.stderr, "Error: expected <%s> but got <%s>" % ( repr( exp ), repr( got ) ) traceback.print_stack()
Example #3
Source File: recipe-577538.py From code with MIT License | 6 votes |
def assertEquals( exp, got, msg = None ): """assertEquals( exp, got[, message] ) Two objects test as "equal" if: * they are the same object as tested by the 'is' operator. * either object is a float or complex number and the absolute value of the difference between the two is less than 1e-8. * applying the equals operator ('==') returns True. """ if exp is got: r = True elif ( type( exp ) in ( FloatType, ComplexType ) or type( got ) in ( FloatType, ComplexType ) ): r = abs( exp - got ) < 1e-8 else: r = ( exp == got ) if not r: print >>sys.stderr, "Error: expected <%s> but got <%s>%s" % ( repr( exp ), repr( got ), colon( msg ) ) traceback.print_stack()
Example #4
Source File: recipe-577538.py From code with MIT License | 6 votes |
def assertNotEquals( exp, got, msg = None ): """assertNotEquals( exp, got[, message] ) Two objects test as "equal" if: * they are the same object as tested by the 'is' operator. * either object is a float or complex number and the absolute value of the difference between the two is less than 1e-8. * applying the equals operator ('==') returns True. """ if exp is got: r = False elif ( type( exp ) in ( FloatType, ComplexType ) or type( got ) in ( FloatType, ComplexType ) ): r = abs( exp - got ) >= 1e-8 else: r = ( exp != got ) if not r: print >>sys.stderr, "Error: expected different values but both are equal to <%s>%s" % ( repr( exp ), colon( msg ) ) traceback.print_stack()
Example #5
Source File: jsonobject.py From zstack-utility with Apache License 2.0 | 5 votes |
def _is_unsupported_type(obj): return isinstance(obj, (types.ComplexType, types.TupleType, types.FunctionType, types.LambdaType, types.GeneratorType, types.MethodType, types.UnboundMethodType, types.BuiltinFunctionType, types.BuiltinMethodType, types.FileType, types.XRangeType, types.TracebackType, types.FrameType, types.DictProxyType, types.NotImplementedType, types.GetSetDescriptorType, types.MemberDescriptorType))
Example #6
Source File: mathutils.py From pyx with GNU General Public License v2.0 | 4 votes |
def realpolyroots(*cs): r"""returns the roots of a polynom with given coefficients polynomial with coefficients given in cs: 0 = \sum_i cs[i] * x^(len(cs)-i-1) """ if not cs: return [0] try: f = 1.0/cs[0] cs = [f*c for c in cs[1:]] except ArithmeticError: return realpolyroots(*cs[1:]) else: n = len(cs) if n == 0: return [] elif n == 1: return [-cs[0]] elif n == 2: return _realroots_quadratic(*cs) elif n == 3: return _realroots_cubic(*cs) elif n == 4: return _realroots_quartic(*cs) else: raise RuntimeError("realpolyroots solver currently limited to polynoms up to the power of 4") # def realpolyroots_eigenvalue(*cs): # # as realpolyroots but using an equivalent eigenvalue problem # # (this code is currently used for functional tests only) # if not _has_numeric: # raise RuntimeError("realpolyroots_eigenvalue depends on Numeric") # if not cs: # return [0] # try: # f = 1.0/cs[0] # cs = [f*c for c in cs[1:]] # except ArithmeticError: # return realpolyroots_eigenvalue(*cs[1:]) # else: # if not cs: # return [] # n = len(cs) # a = Numeric.zeros((n, n), Numeric.Float) # for i in range(n-1): # a[i+1][i] = 1 # for i in range(n): # a[0][i] = -cs[i] # rs = [] # for r in LinearAlgebra.eigenvalues(a): # if type(r) == types.ComplexType: # if not r.imag: # rs.append(r.real) # else: # rs.append(r) # return rs #
Example #7
Source File: mathutils.py From OpenRAM with BSD 3-Clause "New" or "Revised" License | 4 votes |
def realpolyroots(*cs): """returns the roots of a polynom with given coefficients polynomial with coefficients given in cs: 0 = \sum_i cs[i] * x^(len(cs)-i-1) """ if not cs: return [0] try: f = 1.0/cs[0] cs = [f*c for c in cs[1:]] except ArithmeticError: return realpolyroots(*cs[1:]) else: n = len(cs) if n == 0: return [] elif n == 1: return [-cs[0]] elif n == 2: return _realroots_quadratic(*cs) elif n == 3: return _realroots_cubic(*cs) elif n == 4: return _realroots_quartic(*cs) else: raise RuntimeError("realpolyroots solver currently limited to polynoms up to the power of 4") # def realpolyroots_eigenvalue(*cs): # # as realpolyroots but using an equivalent eigenvalue problem # # (this code is currently used for functional tests only) # if not _has_numeric: # raise RuntimeError("realpolyroots_eigenvalue depends on Numeric") # if not cs: # return [0] # try: # f = 1.0/cs[0] # cs = [f*c for c in cs[1:]] # except ArithmeticError: # return realpolyroots_eigenvalue(*cs[1:]) # else: # if not cs: # return [] # n = len(cs) # a = Numeric.zeros((n, n), Numeric.Float) # for i in range(n-1): # a[i+1][i] = 1 # for i in range(n): # a[0][i] = -cs[i] # rs = [] # for r in LinearAlgebra.eigenvalues(a): # if type(r) == types.ComplexType: # if not r.imag: # rs.append(r.real) # else: # rs.append(r) # return rs #