Python numpy.testing.assert_array_almost_equal() Examples
The following are 30
code examples of numpy.testing.assert_array_almost_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.testing
, or try the search function
.
Example #1
Source File: test_loss_func.py From astroNN with MIT License | 6 votes |
def test_binary_crossentropy(self): y_pred = tf.constant([[0.5, 0., 1.], [2., 0., -1.]]) y_pred_2 = tf.constant([[0.5, 2., 1.], [2., 2., -1.]]) y_true = tf.constant([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 0.]]) y_pred_sigmoid = tf.nn.sigmoid(y_pred) y_pred_2_sigmoid = tf.nn.sigmoid(y_pred_2) # Truth with Magic number is wrong npt.assert_array_almost_equal(binary_crossentropy(y_true, y_pred_sigmoid).numpy(), binary_crossentropy(y_true, y_pred, from_logits=True).numpy(), decimal=3) # make sure neural network prediction won't matter for magic number term npt.assert_array_almost_equal( binary_crossentropy(y_true, y_pred_2, from_logits=True).numpy(), binary_crossentropy(y_true, y_pred, from_logits=True).numpy() , decimal=3) npt.assert_array_almost_equal(binary_crossentropy(y_true, y_pred_sigmoid).numpy(), binary_crossentropy(y_true, y_pred_2_sigmoid).numpy(), decimal=3)
Example #2
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_cal_price_fft(self): fft_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 50, 60, 100]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put', 'call']) exp = np.array( [3.09958567e+01, 2.60163625e+01, 8.25753140e-05, 8.12953226e-01, 8.97449491e-11, 2.37785797e+01, 2.19293560e-85, ] ) volatility = 0.20 N = 2 ** 15 d_u = 0.01 alpha = 1 fft_pricer.set_log_st_process(BlackScholes(volatility)) fft_pricer.set_pricing_engine(FFTEngine(N, d_u, alpha, spline_order=3)) res = fft_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)
Example #3
Source File: test_ros.py From vnpy_crypto with MIT License | 6 votes |
def test__do_ros(): expected = numpy.array([ 3.11279729, 3.60634338, 4.04602788, 4.04602788, 4.71008116, 6.14010906, 6.97841457, 2. , 4.2 , 4.62 , 5.57 , 5.66 , 5.86 , 6.65 , 6.78 , 6.79 , 7.5 , 7.5 , 7.5 , 8.63 , 8.71 , 8.99 , 9.85 , 10.82 , 11.25 , 11.25 , 12.2 , 14.92 , 16.77 , 17.81 , 19.16 , 19.19 , 19.64 , 20.18 , 22.97 ]) df = load_basic_data() df = ros._do_ros(df, 'conc', 'censored', numpy.log, numpy.exp) result = df['final'].values npt.assert_array_almost_equal(result, expected)
Example #4
Source File: test_ros.py From vnpy_crypto with MIT License | 6 votes |
def test__impute(): expected = numpy.array([ 3.11279729, 3.60634338, 4.04602788, 4.04602788, 4.71008116, 6.14010906, 6.97841457, 2. , 4.2 , 4.62 , 5.57 , 5.66 , 5.86 , 6.65 , 6.78 , 6.79 , 7.5 , 7.5 , 7.5 , 8.63 , 8.71 , 8.99 , 9.85 , 10.82 , 11.25 , 11.25 , 12.2 , 14.92 , 16.77 , 17.81 , 19.16 , 19.19 , 19.64 , 20.18 , 22.97 ]) df = load_advanced_data() df = ros._impute(df, 'conc', 'censored', numpy.log, numpy.exp) result = df['final'].values npt.assert_array_almost_equal(result, expected)
Example #5
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_cal_price_fractional_fft(self): fft_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 50, 60, 100]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put', 'call']) exp = np.array( [3.09958567e+01, 2.60163625e+01, 8.25753140e-05, 8.12953226e-01, 8.97449491e-11, 2.37785797e+01, 2.19293560e-85, ] ) volatility = 0.20 N = 2 ** 14 d_u = 0.01 d_k = 0.01 alpha = 1 fft_pricer.set_log_st_process(BlackScholes(volatility)) fft_pricer.set_pricing_engine(FractionFFTEngine(N, d_u, d_k, alpha, spline_order=3)) res = fft_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)
Example #6
Source File: basic_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_upper_triangular_P(self): res_default = self.model.solve() # Get upper triangular P P_triu = sparse.triu(self.P, format='csc') # Setup and solve with upper triangular part only m = osqp.OSQP() m.setup(P=P_triu, q=self.q, A=self.A, l=self.l, u=self.u, **self.opts) res_triu = m.solve() # Assert equal nptest.assert_array_almost_equal(res_default.x, res_triu.x) nptest.assert_array_almost_equal(res_default.y, res_triu.y) nptest.assert_array_almost_equal(res_default.info.obj_val, res_triu.info.obj_val)
Example #7
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_cal_price_cosine_2(self): cosine_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 50, 60]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put']) exp = np.array([3.09958568e+01, 2.60164423e+01, 9.56077953e-02, 8.81357807e-01, 1.41769466e-10, 2.37785797e+01] ) volatility = 0.20 N = 2000 cosine_pricer.set_log_st_process(MertonJump(sigma=volatility, jump_rate=0.090913148257155449, norm_m=-0.91157356544103341, norm_sig=7.3383200797618833e-05)) cosine_pricer.set_pricing_engine(CosineEngine(N, L=30)) res = cosine_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)
Example #8
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_cal_price_cosine_3(self): cosine_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 40, 60]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put']) exp = np.array([3.09958567e+01, 2.60163625e+01, 1.71886506e-04, 8.75203272e-01, 3.55292239e-02, 2.37785797e+01] ) volatility = 0.20 N = 2000 cosine_pricer.set_log_st_process(KouJump(sigma=volatility, jump_rate=23.339325557373201, exp_pos=59.378410421004197, exp_neg=-59.447921334340137, prob_pos=-200.08018971817182)) cosine_pricer.set_pricing_engine(CosineEngine(N, L=30)) res = cosine_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)
Example #9
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_cal_price_cosine_5(self): cosine_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 40, 60]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put']) exp = np.array([22.48662613, 17.50712233, -8.50824394, -7.13267131, -7.22087064, 16.09965887] ) volatility = 0.20 N = 2000 cosine_pricer.set_log_st_process(Poisson( jump_rate=0.339325557373201, )) cosine_pricer.set_pricing_engine(CosineEngine(N, L=30)) res = cosine_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)
Example #10
Source File: test_pooling_helper.py From iwcs2017-answer-selection with Apache License 2.0 | 6 votes |
def test_attention_softmax(self): vector_in = tf.constant([ [1., 2., 1., 2.0], [.3, .2, .9, .3] ]) padding = tf.constant([ [1., 1., 1., 0.], [1., 1., 0., 0.] ]) result = self.sess.run(attention_softmax(vector_in, padding)) reference_value = np.array([ [0.21194156, 0.57611692, 0.21194156, 0.], [0.52497919, 0.47502081, 0., 0.] ]) npt.assert_array_almost_equal(result, reference_value)
Example #11
Source File: test_neuralODE.py From astroNN with MIT License | 6 votes |
def test_ODEbadprecision(self): # make sure float32 is not enough for very precise integration t = tf.constant(np.linspace(0, 10, 1000), dtype=tf.float32) # initial condition true_y0 = tf.constant([0., 5.], dtype=tf.float32) true_func = lambda y, t: np.sin(5*t) ode_func = lambda y, t: tf.cast(tf.stack([5*tf.cos(5*t), -25*tf.sin(5*t)]), tf.float32) true_y = odeint(ode_func, true_y0, t, method='dop853', precision=tf.float32) self.assertRaises(AssertionError, npt.assert_array_almost_equal, true_y.numpy()[:, 0], true_func(true_y0, t)) true_y0_pretend_multidims = [[0., 5.]] # to introduce a mix of list, np array, tensor to make sure no issue true_y_pretend_multidims = odeint(ode_func, true_y0_pretend_multidims, t, method='dop853', precision=tf.float32) # assert equal pretendinging multidim or not np.testing.assert_array_almost_equal(true_y_pretend_multidims[0], true_y) true_y0_multidims = tf.constant([[1., 2.], [0., 5.]], dtype=tf.float32) t = np.linspace(0, 10, 1000) true_y_multidims = odeint(ode_func, true_y0_multidims, t, method='dop853', precision=tf.float32) # assert equal in multidim or not np.testing.assert_array_almost_equal(true_y_multidims[1], true_y)
Example #12
Source File: test_numpy_tools.py From astroNN with MIT License | 6 votes |
def test_regularizator(self): # make sure its the same as tensorflow x = np.array([-1., 2., 3., 4.]) reg = 0.2 astroNN_x = l1(x, l1=reg) astroNN_x_2 = l2(x, l2=reg) with tf.device("/cpu:0"), context.eager_mode(): l1_reg = tf.keras.regularizers.l1(l=reg) l2_reg = tf.keras.regularizers.l2(l=reg) tf_x = l1_reg(tf.convert_to_tensor(x)) tf_x_2 = l2_reg(tf.convert_to_tensor(x)) npt.assert_array_almost_equal(tf_x.numpy(), astroNN_x) npt.assert_array_almost_equal(tf_x_2.numpy(), astroNN_x_2)
Example #13
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_cal_price_cosine_6(self): cosine_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 40, 60]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put']) exp = np.array([30.9958673, 26.01656399, 0.15928293, 1.72971868, 0.56756891, 23.82357896]) volatility = 0.20 N = 2000 cosine_pricer.set_log_st_process(CGMY(c=0.1, g=2, m=2, y=1.5)) cosine_pricer.set_pricing_engine(CosineEngine(N, L=30)) res = cosine_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)
Example #14
Source File: test_gaia_tools.py From astroNN with MIT License | 6 votes |
def test_logsol(self): # Test conversion tools related to log solar luminosity from astroNN.gaia import fakemag_to_logsol, absmag_to_logsol, logsol_to_absmag, logsol_to_fakemag self.assertEqual(logsol_to_fakemag(fakemag_to_logsol(100.)), 100.) npt.assert_array_equal(logsol_to_fakemag(fakemag_to_logsol([100., 100.])), [100., 100.]) npt.assert_array_equal(logsol_to_fakemag(fakemag_to_logsol(np.array([100, 100, 100]))), [100., 100., 100.]) self.assertEqual(fakemag_to_logsol(MAGIC_NUMBER), MAGIC_NUMBER) self.assertEqual(logsol_to_fakemag(fakemag_to_logsol(MAGIC_NUMBER)), MAGIC_NUMBER) self.assertEqual(np.any(fakemag_to_logsol([MAGIC_NUMBER, 1000]) == MAGIC_NUMBER), True) self.assertEqual(logsol_to_absmag(absmag_to_logsol(99.)), 99.) self.assertAlmostEqual(logsol_to_absmag(absmag_to_logsol(-99.)), -99.) npt.assert_array_equal(logsol_to_absmag(absmag_to_logsol([99., 99.])), [99., 99.]) npt.assert_array_almost_equal(logsol_to_absmag(absmag_to_logsol([-99., -99.])), [-99., -99.]) npt.assert_array_almost_equal(logsol_to_absmag(absmag_to_logsol(np.array([99., 99., 99.]))), [99., 99., 99.]) self.assertEqual(absmag_to_logsol(MAGIC_NUMBER), MAGIC_NUMBER) self.assertEqual(logsol_to_absmag(absmag_to_logsol(MAGIC_NUMBER)), MAGIC_NUMBER) self.assertEqual(np.any(absmag_to_logsol([MAGIC_NUMBER, 1000]) == MAGIC_NUMBER), True)
Example #15
Source File: feasibility_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_feasibility_problem(self): # Solve problem res = self.model.solve() # Assert close nptest.assert_array_almost_equal( res.x, np.array([-0.0656074, 1.04194398, 0.4756959, -1.64036689, -0.34180168, -0.81696303, -1.06389178, 0.44944554, -0.44829675, -1.01289944, -0.12513655, 0.02267293, -1.15206474, 1.06817424, 1.18143313, 0.01690332, -0.11373645, -0.48115767, 0.25373436, 0.81369707, 0.18883475, 0.47000419, -0.24932451, 0.09298623, 1.88381076, 0.77536814, -1.35971433, 0.51511176, 0.03317466, 0.90226419]), decimal=3) nptest.assert_array_almost_equal(res.y, np.zeros(self.m), decimal=3) nptest.assert_array_almost_equal(res.info.obj_val, 0., decimal=3)
Example #16
Source File: codegen_vectors_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_bounds(self): import vec_emosqp # Update upper bound l_new = -100. * np.ones(self.m) u_new = 1000. * np.ones(self.m) vec_emosqp.update_bounds(l_new, u_new) x, y, _, _, _ = vec_emosqp.solve() # Assert close nptest.assert_array_almost_equal( x, np.array([-0.12727273, -19.94909091]), decimal=4) nptest.assert_array_almost_equal( y, np.array([0., 0., 0., -0.8, 0.]), decimal=4) # Update upper bound to the original value vec_emosqp.update_bounds(self.l, self.u)
Example #17
Source File: codegen_vectors_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_u(self): import vec_emosqp # Update upper bound u_new = 1000. * np.ones(self.m) vec_emosqp.update_upper_bound(u_new) x, y, _, _, _ = vec_emosqp.solve() # Assert close nptest.assert_array_almost_equal( x, np.array([-1.51515152e-01, -3.33282828e+02]), decimal=4) nptest.assert_array_almost_equal( y, np.array([0., 0., 1.33333333, 0., 0.]), decimal=4) # Update upper bound to the original value vec_emosqp.update_upper_bound(self.u)
Example #18
Source File: codegen_matrices_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_P_allind(self): import mat_emosqp # Update matrix P Px = self.P_new.data mat_emosqp.update_P(Px, None, 0) x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([0., 5.]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 3., 0., 0.]), decimal=5) # Update matrix P to the original value Px_idx = np.arange(self.P.nnz) mat_emosqp.update_P(Px, Px_idx, len(Px))
Example #19
Source File: codegen_matrices_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_A(self): import mat_emosqp # Update matrix A Ax = self.A_new.data Ax_idx = np.arange(self.A_new.nnz) mat_emosqp.update_A(Ax, Ax_idx, len(Ax)) # Solve problem x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([0.15765766, 7.34234234]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 2.36711712, 0., 0.]), decimal=5) # Update matrix A to the original value Ax = self.A.data Ax_idx = np.arange(self.A.nnz) mat_emosqp.update_A(Ax, Ax_idx, len(Ax))
Example #20
Source File: codegen_matrices_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_A_allind(self): import mat_emosqp # Update matrix A Ax = self.A_new.data mat_emosqp.update_A(Ax, None, 0) x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([0.15765766, 7.34234234]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 2.36711712, 0., 0.]), decimal=5) # Update matrix A to the original value Ax = self.A.data Ax_idx = np.arange(self.A.nnz) mat_emosqp.update_A(Ax, Ax_idx, len(Ax))
Example #21
Source File: codegen_matrices_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_P_A_indP_indA(self): import mat_emosqp # Update matrices P and A Px = self.P_new.data Px_idx = np.arange(self.P_new.nnz) Ax = self.A_new.data Ax_idx = np.arange(self.A_new.nnz) mat_emosqp.update_P_A(Px, Px_idx, len(Px), Ax, Ax_idx, len(Ax)) # Solve problem x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 3.625, 0., 0.]), decimal=5) # Update matrices P and A to the original values Px = self.P.data Ax = self.A.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0)
Example #22
Source File: codegen_matrices_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_P_A_indP(self): import mat_emosqp # Update matrices P and A Px = self.P_new.data Px_idx = np.arange(self.P_new.nnz) Ax = self.A_new.data mat_emosqp.update_P_A(Px, Px_idx, len(Px), Ax, None, 0) x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5) nptest.assert_array_almost_equal( y, np.array([0., 0., 3.625, 0., 0.]), decimal=5) # Update matrices P and A to the original values Px = self.P.data Ax = self.A.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0)
Example #23
Source File: codegen_matrices_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_update_P_A_allind(self): import mat_emosqp # Update matrices P and A Px = self.P_new.data Ax = self.A_new.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0) x, y, _, _, _ = mat_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5) nptest.assert_array_almost_equal(y, np.array([0., 0., 3.625, 0., 0.]), decimal=5) # Update matrices P and A to the original values Px = self.P.data Ax = self.A.data mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0)
Example #24
Source File: unconstrained_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_unconstrained_problem(self): # Solve problem res = self.model.solve() # Assert close nptest.assert_array_almost_equal( res.x, np.array([ -0.61981415, -0.06174194, 0.83824061, -0.0595013, -0.17810828, 2.90550031, -1.8901713, -1.91191741, -3.73603446, 1.7530356, -1.67018181, 3.42221944, 0.61263403, -0.45838347, -0.13194248, 2.95744794, 5.2902277, -1.42836238, -8.55123842, -0.79093815, 0.43418189, -0.69323554, 1.15967924, -0.47821898, 3.6108927, 0.03404309, 0.16322926, -2.17974795, 0.32458796, -1.97553574])) nptest.assert_array_almost_equal(res.y, np.array([])) nptest.assert_array_almost_equal(res.info.obj_val, -35.020288603855825)
Example #25
Source File: polishing_test.py From osqp-python with Apache License 2.0 | 6 votes |
def test_polish_simple(self): # Simple QP problem self.P = sparse.diags([11., 0.], format='csc') self.q = np.array([3, 4]) self.A = sparse.csc_matrix([[-1, 0], [0, -1], [-1, -3], [2, 5], [3, 4]]) self.u = np.array([0, 0, -15, 100, 80]) self.l = -np.inf * np.ones(len(self.u)) self.n = self.P.shape[0] self.m = self.A.shape[0] self.model = osqp.OSQP() self.model.setup(P=self.P, q=self.q, A=self.A, l=self.l, u=self.u, **self.opts) # Solve problem res = self.model.solve() # Assert close nptest.assert_array_almost_equal(res.x, np.array([0., 5.])) nptest.assert_array_almost_equal(res.y, np.array([1.66666667, 0., 1.33333333, 0., 0.])) nptest.assert_array_almost_equal(res.info.obj_val, 20.)
Example #26
Source File: test_scripts.py From pyAFQ with BSD 2-Clause "Simplified" License | 6 votes |
def test_predict_dki(): with nbtmp.InTemporaryDirectory() as tmpdir: fbval = op.join(tmpdir, 'dki.bval') fbvec = op.join(tmpdir, 'dki.bvec') fdata = op.join(tmpdir, 'dki.nii.gz') make_dki_data(fbval, fbvec, fdata) cmd1 = ["pyAFQ_dki", "-d", fdata, "-l", fbval, "-c", fbvec, "-o", tmpdir] out = runner.run_command(cmd1) npt.assert_equal(out[0], 0) # Get expected values fparams = op.join(tmpdir, "dki_params.nii.gz") cmd2 = ["pyAFQ_dki_predict", "-p", fparams, "-l", fbval, "-c", fbvec, "-o", tmpdir, '-b', '0'] out = runner.run_command(cmd2) npt.assert_equal(out[0], 0) pred = nib.load(op.join(tmpdir, "dki_prediction.nii.gz")).get_fdata() data = nib.load(op.join(tmpdir, "dki.nii.gz")).get_fdata() npt.assert_array_almost_equal(pred, data)
Example #27
Source File: test_scripts.py From pyAFQ with BSD 2-Clause "Simplified" License | 6 votes |
def test_predict_dti(): with nbtmp.InTemporaryDirectory() as tmpdir: fbval = op.join(tmpdir, 'dti.bval') fbvec = op.join(tmpdir, 'dti.bvec') fdata = op.join(tmpdir, 'dti.nii.gz') make_dti_data(fbval, fbvec, fdata) cmd1 = ["pyAFQ_dti", "-d", fdata, "-l", fbval, "-c", fbvec, "-o", tmpdir] out = runner.run_command(cmd1) npt.assert_equal(out[0], 0) # Get expected values fparams = op.join(tmpdir, "dti_params.nii.gz") cmd2 = ["pyAFQ_dti_predict", "-p", fparams, "-l", fbval, "-c", fbvec, "-o", tmpdir, '-b', '0'] out = runner.run_command(cmd2) npt.assert_equal(out[0], 0) pred = nib.load(op.join(tmpdir, "dti_prediction.nii.gz")).get_fdata() data = nib.load(op.join(tmpdir, "dti.nii.gz")).get_fdata() npt.assert_array_almost_equal(pred, data)
Example #28
Source File: basic_test.py From osqp-python with Apache License 2.0 | 5 votes |
def test_update_l(self): # Update lower bound l_new = -100 * np.ones(self.m) self.model.update(l=l_new) res = self.model.solve() # Assert close nptest.assert_array_almost_equal(res.x, np.array([0., 5.])) nptest.assert_array_almost_equal(res.y, np.array([1.66666667, 0., 1.33333333, 0., 0.])) nptest.assert_array_almost_equal(res.info.obj_val, 20.)
Example #29
Source File: codegen_vectors_test.py From osqp-python with Apache License 2.0 | 5 votes |
def test_solve(self): # Generate the code self.model.codegen('code', python_ext_name='vec_emosqp', force_rewrite=True) sh.rmtree('code') import vec_emosqp # Solve problem x, y, _, _, _ = vec_emosqp.solve() # Assert close nptest.assert_array_almost_equal(x, np.array([0., 5.]), decimal=5) nptest.assert_array_almost_equal( y, np.array([1.66666667, 0., 1.33333333, 0., 0.]), decimal=5)
Example #30
Source File: test_pricing_class.py From fftoptionlib with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_cal_price_cosine(self): cosine_pricer = FourierPricer(self.vanilla_option) strike_arr = np.array([5, 10, 30, 36, 50, 60, 100]) put_call_arr = np.array(['call', 'call', 'put', 'call', 'call', 'put', 'call']) exp = np.array([3.09958567e+01, 2.60163625e+01, 8.25753140e-05, 8.12953226e-01, 8.97449491e-11, 2.37785797e+01, 2.19293560e-85, ] ) volatility = 0.20 N = 150 cosine_pricer.set_log_st_process(BlackScholes(volatility)) cosine_pricer.set_pricing_engine(CosineEngine(N, L=30)) res = cosine_pricer.calc_price(strike_arr, put_call_arr, put_label='put') npt.assert_array_almost_equal(res, exp, 6)