Python numpy.random.uniform() Examples
The following are 30
code examples of numpy.random.uniform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: augmentations.py From ScanSSD with MIT License | 6 votes |
def __call__(self, image, boxes, labels): if random.randint(2): return image, boxes, labels height, width, depth = image.shape ratio = random.uniform(1, 4) left = random.uniform(0, width*ratio - width) top = random.uniform(0, height*ratio - height) expand_image = np.zeros( (int(height*ratio), int(width*ratio), depth), dtype=image.dtype) expand_image[:, :, :] = self.mean expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image boxes = boxes.copy() boxes[:, :2] += (int(left), int(top)) boxes[:, 2:] += (int(left), int(top)) return image, boxes, labels
Example #2
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def _validate_csr_generation_inputs(num_rows, num_cols, density, distribution="uniform"): """Validates inputs for csr generation helper functions """ total_nnz = int(num_rows * num_cols * density) if density < 0 or density > 1: raise ValueError("density has to be between 0 and 1") if num_rows <= 0 or num_cols <= 0: raise ValueError("num_rows or num_cols should be greater than 0") if distribution == "powerlaw": if total_nnz < 2 * num_rows: raise ValueError("not supported for this density: %s" " for this shape (%s, %s)" " Please keep :" " num_rows * num_cols * density >= 2 * num_rows" % (density, num_rows, num_cols))
Example #3
Source File: sgl_parm.py From touvlo with MIT License | 6 votes |
def rand_init_weights(L_in, L_out): """Initializes weight matrix with random values. Args: X (numpy.array): Features' dataset. L_in (int): Number of units in previous layer. n_hidden_layers (int): Number of units in next layer. Returns: numpy.array: Random values' matrix of conforming dimensions. """ W = zeros((L_out, 1 + L_in), float64) # plus 1 for bias term epsilon_init = sqrt(6) / sqrt((L_in + 1) + L_out) W = uniform(size=(L_out, 1 + L_in)) * 2 * epsilon_init - epsilon_init return W
Example #4
Source File: basemodel.py From RRMPG with MIT License | 6 votes |
def get_random_params(self, num=1): """Generate random sets of model parameters in the default bounds. Samples num values for each model parameter from a uniform distribution between the default bounds. Args: num: (optional) Integer, specifying the number of parameter sets, that will be generated. Default is 1. Returns: A numpy array of the models custom data type, containing the at random generated parameters. """ params = np.zeros(num, dtype=self._dtype) # sample one value for each parameter for param in self._param_list: values = uniform(low=self._default_bounds[param][0], high=self._default_bounds[param][1], size=num) params[param] = values return params
Example #5
Source File: augmentations.py From lightDSFD with MIT License | 6 votes |
def __call__(self, image, boxes, labels): if random.randint(5): return image, boxes, labels height, width, depth = image.shape ratio = random.uniform(1, 4) left = random.uniform(0, width*ratio - width) top = random.uniform(0, height*ratio - height) expand_image = np.zeros( (int(height*ratio), int(width*ratio), depth), dtype=image.dtype) expand_image[:, :, :] = self.mean expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image boxes = boxes.copy() boxes[:, :2] += (int(left), int(top)) boxes[:, 2:] += (int(left), int(top)) return image, boxes, labels
Example #6
Source File: augmentation.py From TextSnake.pytorch with MIT License | 6 votes |
def __call__(self, image, polygons=None): if np.random.randint(2): return image, polygons height, width, depth = image.shape ratio = np.random.uniform(1, 2) left = np.random.uniform(0, width * ratio - width) top = np.random.uniform(0, height * ratio - height) expand_image = np.zeros( (int(height * ratio), int(width * ratio), depth), dtype=image.dtype) expand_image[:, :, :] = self.fill expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image if polygons is not None: for polygon in polygons: polygon.points[:, 0] = polygon.points[:, 0] + left polygon.points[:, 1] = polygon.points[:, 1] + top return image, polygons
Example #7
Source File: augmentations.py From Grid-Anchor-based-Image-Cropping-Pytorch with MIT License | 6 votes |
def __call__(self, image, boxes, labels): if random.randint(2): return image, boxes, labels height, width, depth = image.shape ratio = random.uniform(1, 4) left = random.uniform(0, width*ratio - width) top = random.uniform(0, height*ratio - height) expand_image = np.zeros( (int(height*ratio), int(width*ratio), depth), dtype=image.dtype) expand_image[:, :, :] = self.mean expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image boxes = boxes.copy() boxes[:, :2] += (int(left), int(top)) boxes[:, 2:] += (int(left), int(top)) return image, boxes, labels
Example #8
Source File: kinetics.py From 2D-kinectics with MIT License | 6 votes |
def cv_random_crop(img, scale_size, output_size, params=None): if params is None: height, width, _ = img.shape w = nprandom.uniform(0.6 * width, width) h = nprandom.uniform(0.6 * height, height) left = nprandom.uniform(width - w) top = nprandom.uniform(height - h) # convert to integer rect x1,y1,x2,y2 rect = np.array([int(left), int(top), int(left + w), int(top + h)]) flip = random.random()<0.5 else: rect,flip = params img = img[rect[1]:rect[3], rect[0]:rect[2], :] return img, [rect, flip]
Example #9
Source File: transforms_self.py From ZSL2018_Zero_Shot_Learning with MIT License | 6 votes |
def __call__(self,img, attr_idx): if attr_idx not in self.select: return img, attr_idx h, w, _ = img.shape area = h * w for attempt in range(10): s = random.uniform(self.scale[0], self.scale[1]) d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0]) target_area = s * area new_w = int(round(math.sqrt(target_area))) new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w dh = h - new_h x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw)) y0 = (random.randint(max(0,int(0.8*dh)-1), dh)) out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out, attr_idx # Fallback return bottom_crop(img, self.size), attr_idx
Example #10
Source File: augmentations.py From CSD-SSD with MIT License | 6 votes |
def __call__(self, image, boxes, labels): if random.randint(2): return image, boxes, labels height, width, depth = image.shape ratio = random.uniform(1, 4) left = random.uniform(0, width*ratio - width) top = random.uniform(0, height*ratio - height) expand_image = np.zeros( (int(height*ratio), int(width*ratio), depth), dtype=image.dtype) expand_image[:, :, :] = self.mean expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image boxes = boxes.copy() boxes[:, :2] += (int(left), int(top)) boxes[:, 2:] += (int(left), int(top)) return image, boxes, labels
Example #11
Source File: Conv1d.py From RaptorX-Contact with GNU General Public License v3.0 | 6 votes |
def testConv1DLayer(): rng = numpy.random.RandomState() input = T.tensor3('input') #windowSize = 3 n_in = 4 n_hiddens = [10,10,5] #convR = Conv1DR(rng, input, n_in, n_hiddens, windowSize/2) convLayer = Conv1DLayer(rng, input, n_in, 5, halfWinSize=1) #f = theano.function([input],convR.output) #f = theano.function([input],[convLayer.output, convLayer.out2, convLayer.convout, convLayer.out3]) f = theano.function([input], convLayer.output) numOfProfiles=6 seqLen = 10 profile = numpy.random.uniform(0,1, (numOfProfiles, seqLen,n_in)) out = f(profile) print out.shape print out
Example #12
Source File: risk.py From cryptotrader with MIT License | 6 votes |
def test_risk_adjusted_metrics(): # Returns from the portfolio (r) and market (m) r = nrand.uniform(-1, 1, 50) m = nrand.uniform(-1, 1, 50) # Expected return e = numpy.mean(r) # Risk free rate f = 0.06 # Risk-adjusted return based on Volatility print("Treynor Ratio =", treynor_ratio(e, r, m, f)) print("Sharpe Ratio =", sharpe_ratio(e, r, f)) print("Information Ratio =", information_ratio(r, m)) # Risk-adjusted return based on Value at Risk print("Excess VaR =", excess_var(e, r, f, 0.05)) print("Conditional Sharpe Ratio =", conditional_sharpe_ratio(e, r, f, 0.05)) # Risk-adjusted return based on Lower Partial Moments print("Omega Ratio =", omega_ratio(e, r, f)) print("Sortino Ratio =", sortino_ratio(e, r, f)) print("Kappa 3 Ratio =", kappa_three_ratio(e, r, f)) print("Gain Loss Ratio =", gain_loss_ratio(r)) print("Upside Potential Ratio =", upside_potential_ratio(r)) # Risk-adjusted return based on Drawdown risk print("Calmar Ratio =", calmar_ratio(e, r, f)) print("Sterling Ratio =", sterling_ration(e, r, f, 5)) print("Burke Ratio =", burke_ratio(e, r, f, 5))
Example #13
Source File: transforms_self.py From ZSL2018_Zero_Shot_Learning with MIT License | 5 votes |
def __call__(self, image): if random.randint(2): alpha = random.uniform(-self.delta, self.delta) image[:, :, 0] += alpha image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 # print('RandomHue,alpha:', alpha) return image
Example #14
Source File: transforms_self.py From ZSL2018_Zero_Shot_Learning with MIT License | 5 votes |
def __call__(self, image): if random.randint(2): alpha = random.uniform(self.lower, self.upper) # print('contrast:', alpha) image = (image * alpha).clip(0.0,255.0) return image
Example #15
Source File: transforms_self.py From ZSL2018_Zero_Shot_Learning with MIT License | 5 votes |
def __call__(self, image): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image[:, :, 1] *= alpha # print('RandomSaturation,alpha',alpha) return image
Example #16
Source File: transforms_self.py From ZSL2018_Zero_Shot_Learning with MIT License | 5 votes |
def __call__(self,img): do_rotate = random.randint(0, 2) if do_rotate: angle = np.random.uniform(self.angles[0], self.angles[1]) if self.bound: img = rotate_bound(img, angle) else: img = rotate_nobound(img, angle) return img
Example #17
Source File: augmentations.py From lightDSFD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 1] *= random.uniform(self.lower, self.upper) return image, boxes, labels
Example #18
Source File: augmentations.py From lightDSFD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image *= alpha return image, boxes, labels
Example #19
Source File: augmentations.py From lightDSFD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 0] += random.uniform(-self.delta, self.delta) image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 return image, boxes, labels
Example #20
Source File: augmentations.py From lightDSFD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image += delta return image, boxes, labels
Example #21
Source File: step2.py From bokeh-dashboard-webinar with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _create_prices(t): last_average = 100 if t==0 else source.data['average'][-1] returns = asarray(lognormal(mean.value, stddev.value, 1)) average = last_average * cumprod(returns) high = average * exp(abs(gamma(1, 0.03, size=1))) low = average / exp(abs(gamma(1, 0.03, size=1))) delta = high - low open = low + delta * uniform(0.05, 0.95, size=1) close = low + delta * uniform(0.05, 0.95, size=1) return open[0], high[0], low[0], close[0], average[0]
Example #22
Source File: transforms_self.py From ZSL2018_Zero_Shot_Learning with MIT License | 5 votes |
def __call__(self, image): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image = (image + delta).clip(0.0, 255.0) # print('RandomBrightness,delta ',delta) return image
Example #23
Source File: augmentations.py From Grid-Anchor-based-Image-Cropping-Pytorch with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 1] *= random.uniform(self.lower, self.upper) return image, boxes, labels
Example #24
Source File: risk.py From cryptotrader with MIT License | 5 votes |
def test_risk_metrics(): # This is just a testing method r = nrand.uniform(-1, 1, 50) m = nrand.uniform(-1, 1, 50) print("vol =", vol(r)) print("beta =", beta(r, m)) print("hpm(0.0)_1 =", hpm(r, 0.0, 1)) print("lpm(0.0)_1 =", lpm(r, 0.0, 1)) print("VaR(0.05) =", var(r, 0.05)) print("CVaR(0.05) =", cvar(r, 0.05)) print("Drawdown(5) =", dd(r, 5)) print("Max Drawdown =", max_dd(r))
Example #25
Source File: dataset.py From causal-text-embeddings with MIT License | 5 votes |
def make_propensity_based_simulated_labeler(treat_strength, con_strength, noise_level, base_propensity_scores, example_indices, exogeneous_con=0., setting="simple", seed=42): np.random.seed(seed) all_noise = random.normal(0, 1, base_propensity_scores.shape[0]).astype(np.float32) all_threshholds = np.array(random.uniform(0, 1, base_propensity_scores.shape[0]), dtype=np.float32) extra_confounding = random.normal(0, 1, base_propensity_scores.shape[0]).astype(np.float32) all_propensity_scores = expit((1.-exogeneous_con)*logit(base_propensity_scores) + exogeneous_con * extra_confounding).astype(np.float32) all_treatments = random.binomial(1, all_propensity_scores).astype(np.int32) # indices in dataset refer to locations in entire corpus, # but propensity scores will typically only inlcude a subset of the examples reindex_hack = np.zeros(12000, dtype=np.int32) reindex_hack[example_indices] = np.arange(example_indices.shape[0], dtype=np.int32) def labeler(data): index = data['index'] index_hack = tf.gather(reindex_hack, index) treatment = tf.gather(all_treatments, index_hack) confounding = 3.0 * (tf.gather(all_propensity_scores, index_hack) - 0.25) noise = tf.gather(all_noise, index_hack) y, y0, y1 = outcome_sim(treat_strength, con_strength, noise_level, tf.cast(treatment, tf.float32), confounding, noise, setting=setting) simulated_prob = tf.nn.sigmoid(y) y0 = tf.nn.sigmoid(y0) y1 = tf.nn.sigmoid(y1) threshold = tf.gather(all_threshholds, index) simulated_outcome = tf.cast(tf.greater(simulated_prob, threshold), tf.int32) return {**data, 'outcome': simulated_outcome, 'y0': y0, 'y1': y1, 'treatment': treatment} return labeler
Example #26
Source File: dataset.py From causal-text-embeddings with MIT License | 5 votes |
def make_buzzy_based_simulated_labeler(treat_strength, con_strength, noise_level, setting="simple", seed=0): # hardcode probability of theorem given buzzy / not_buzzy theorem_given_buzzy_probs = np.array([0.27, 0.07], dtype=np.float32) np.random.seed(seed) all_noise = np.array(random.normal(0, 1, 12000), dtype=np.float32) all_threshholds = np.array(random.uniform(0, 1, 12000), dtype=np.float32) def labeler(data): buzzy = data['buzzy_title'] index = data['index'] treatment = data['theorem_referenced'] treatment = tf.cast(treatment, tf.float32) confounding = 3.0*(tf.gather(theorem_given_buzzy_probs, buzzy) - 0.25) noise = tf.gather(all_noise, index) y, y0, y1 = outcome_sim(treat_strength, con_strength, noise_level, treatment, confounding, noise, setting=setting) simulated_prob = tf.nn.sigmoid(y) y0 = tf.nn.sigmoid(y0) y1 = tf.nn.sigmoid(y1) threshold = tf.gather(all_threshholds, index) simulated_outcome = tf.cast(tf.greater(simulated_prob, threshold), tf.int32) return {**data, 'outcome': simulated_outcome, 'y0': y0, 'y1': y1} return labeler
Example #27
Source File: augmentation.py From TextSnake.pytorch with MIT License | 5 votes |
def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ for attempt in range(10): area = img.shape[0] * img.shape[1] target_area = np.random.uniform(*scale) * area aspect_ratio = np.random.uniform(*ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if np.random.random() < 0.5: w, h = h, w if h < img.shape[0] and w < img.shape[1]: j = np.random.randint(0, img.shape[1] - w) i = np.random.randint(0, img.shape[0] - h) return i, j, h, w # Fallback w = min(img.shape[0], img.shape[1]) i = (img.shape[0] - w) // 2 j = (img.shape[1] - w) // 2 return i, j, w, w
Example #28
Source File: augmentation.py From TextSnake.pytorch with MIT License | 5 votes |
def __call__(self, img, polygons=None): if np.random.randint(2): return img, polygons angle = np.random.uniform(-self.up, self.up) # rows, cols = img.shape[0:2] M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1.0) img = cv2.warpAffine(img, M, (cols, rows), borderValue=[0, 0, 0]) center = cols / 2.0, rows / 2.0 if polygons is not None: for polygon in polygons: x, y = self.rotate(center, polygon.points, angle) pts = np.vstack([x, y]).T polygon.points = pts return img, polygons
Example #29
Source File: augmentation.py From TextSnake.pytorch with MIT License | 5 votes |
def __call__(self, image, polygons=None): image = image.astype(np.float32) if random.randint(2): delta = random.uniform(-self.delta, self.delta) image += delta return np.clip(image, 0, 255), polygons
Example #30
Source File: augmentation.py From TextSnake.pytorch with MIT License | 5 votes |
def __call__(self, image, polygons=None): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image *= alpha return np.clip(image, 0, 255), polygons