Python numpy.linalg.inv() Examples
The following are 30
code examples of numpy.linalg.inv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.linalg
, or try the search function
.
Example #1
Source File: test_defmatrix.py From lambda-packs with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** i).A, B)) B = np.dot(B, A) Ainv = linalg.inv(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** -i).A, B)) B = np.dot(B, Ainv) assert_(np.allclose((mA * mA).A, np.dot(A, A))) assert_(np.allclose((mA + mA).A, (A + A))) assert_(np.allclose((3*mA).A, (3*A))) mA2 = matrix(A) mA2 *= 3 assert_(np.allclose(mA2.A, 3*A))
Example #2
Source File: test_defmatrix.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** i).A, B)) B = np.dot(B, A) Ainv = linalg.inv(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** -i).A, B)) B = np.dot(B, Ainv) assert_(np.allclose((mA * mA).A, np.dot(A, A))) assert_(np.allclose((mA + mA).A, (A + A))) assert_(np.allclose((3*mA).A, (3*A))) mA2 = matrix(A) mA2 *= 3 assert_(np.allclose(mA2.A, 3*A))
Example #3
Source File: test_defmatrix.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) assert_(np.allclose(linalg.inv(A), mA.I)) assert_(np.all(np.array(np.transpose(A) == mA.T))) assert_(np.all(np.array(np.transpose(A) == mA.H))) assert_(np.all(A == mA.A)) B = A + 2j*A mB = matrix(B) assert_(np.allclose(linalg.inv(B), mB.I)) assert_(np.all(np.array(np.transpose(B) == mB.T))) assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
Example #4
Source File: geomlib.py From pyberny with Mozilla Public License 2.0 | 6 votes |
def super_circum(self, radius): """ Supercell dimensions such that the supercell circumsribes a sphere. :param float radius: circumscribed radius in angstroms Returns :data:`None` when geometry is not a crystal. """ if self.lattice is None: return rec_lattice = 2 * pi * inv(self.lattice.T) layer_sep = np.array( [ sum(vec * rvec / norm(rvec)) for vec, rvec in zip(self.lattice, rec_lattice) ] ) return np.array(np.ceil(radius / layer_sep + 0.5), dtype=int)
Example #5
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_byteorder_check(): # Byte order check should pass for native order if sys.byteorder == 'little': native = '<' else: native = '>' for dtt in (np.float32, np.float64): arr = np.eye(4, dtype=dtt) n_arr = arr.newbyteorder(native) sw_arr = arr.newbyteorder('S').byteswap() assert_equal(arr.dtype.byteorder, '=') for routine in (linalg.inv, linalg.det, linalg.pinv): # Normal call res = routine(arr) # Native but not '=' assert_array_equal(res, routine(n_arr)) # Swapped assert_array_equal(res, routine(sw_arr))
Example #6
Source File: ar_model.py From vnpy_crypto with MIT License | 6 votes |
def _presample_varcov(self, params): """ Returns the inverse of the presample variance-covariance. Notes ----- See Hamilton p. 125 """ k = self.k_trend p = self.k_ar p1 = p+1 # get inv(Vp) Hamilton 5.3.7 params0 = np.r_[-1, params[k:]] Vpinv = np.zeros((p, p), dtype=params.dtype) for i in range(1, p1): Vpinv[i-1, i-1:] = np.correlate(params0, params0[:i],)[:-1] Vpinv[i-1, i-1:] -= np.correlate(params0[-i:], params0,)[:-1] Vpinv = Vpinv + Vpinv.T - np.diag(Vpinv.diagonal()) return Vpinv
Example #7
Source File: test_linalg.py From Computable with MIT License | 6 votes |
def test_byteorder_check(): # Byte order check should pass for native order if sys.byteorder == 'little': native = '<' else: native = '>' for dtt in (np.float32, np.float64): arr = np.eye(4, dtype=dtt) n_arr = arr.newbyteorder(native) sw_arr = arr.newbyteorder('S').byteswap() assert_equal(arr.dtype.byteorder, '=') for routine in (linalg.inv, linalg.det, linalg.pinv): # Normal call res = routine(arr) # Native but not '=' assert_array_equal(res, routine(n_arr)) # Swapped assert_array_equal(res, routine(sw_arr))
Example #8
Source File: test_linalg.py From vnpy_crypto with MIT License | 6 votes |
def test_byteorder_check(): # Byte order check should pass for native order if sys.byteorder == 'little': native = '<' else: native = '>' for dtt in (np.float32, np.float64): arr = np.eye(4, dtype=dtt) n_arr = arr.newbyteorder(native) sw_arr = arr.newbyteorder('S').byteswap() assert_equal(arr.dtype.byteorder, '=') for routine in (linalg.inv, linalg.det, linalg.pinv): # Normal call res = routine(arr) # Native but not '=' assert_array_equal(res, routine(n_arr)) # Swapped assert_array_equal(res, routine(sw_arr))
Example #9
Source File: vecm.py From vnpy_crypto with MIT License | 6 votes |
def cov_params_default(self): # p.296 (7.2.21) # Sigma_co described on p. 287 beta = self.beta if self.det_coef_coint.size > 0: beta = vstack((beta, self.det_coef_coint)) dt = self.deterministic num_det = ("co" in dt) + ("lo" in dt) num_det += (self.seasons-1) if self.seasons else 0 if self.exog is not None: num_det += self.exog.shape[1] b_id = scipy.linalg.block_diag(beta, np.identity(self.neqs * (self.k_ar-1) + num_det)) y_lag1 = self._y_lag1 b_y = beta.T.dot(y_lag1) omega11 = b_y.dot(b_y.T) omega12 = b_y.dot(self._delta_x.T) omega21 = omega12.T omega22 = self._delta_x.dot(self._delta_x.T) omega = np.bmat([[omega11, omega12], [omega21, omega22]]).A mat1 = b_id.dot(inv(omega)).dot(b_id.T) return np.kron(mat1, self.sigma_u)
Example #10
Source File: test_defmatrix.py From lambda-packs with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) assert_(np.allclose(linalg.inv(A), mA.I)) assert_(np.all(np.array(np.transpose(A) == mA.T))) assert_(np.all(np.array(np.transpose(A) == mA.H))) assert_(np.all(A == mA.A)) B = A + 2j*A mB = matrix(B) assert_(np.allclose(linalg.inv(B), mB.I)) assert_(np.all(np.array(np.transpose(B) == mB.T))) assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
Example #11
Source File: test_defmatrix.py From Computable with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = array([[1., 2.], [3., 4.]]) mA = matrix(A) B = identity(2) for i in range(6): assert_(allclose((mA ** i).A, B)) B = dot(B, A) Ainv = linalg.inv(A) B = identity(2) for i in range(6): assert_(allclose((mA ** -i).A, B)) B = dot(B, Ainv) assert_(allclose((mA * mA).A, dot(A, A))) assert_(allclose((mA + mA).A, (A + A))) assert_(allclose((3*mA).A, (3*A))) mA2 = matrix(A) mA2 *= 3 assert_(allclose(mA2.A, 3*A))
Example #12
Source File: test_defmatrix.py From Computable with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = array([[1., 2.], [3., 4.]]) mA = matrix(A) assert_(allclose(linalg.inv(A), mA.I)) assert_(all(array(transpose(A) == mA.T))) assert_(all(array(transpose(A) == mA.H))) assert_(all(A == mA.A)) B = A + 2j*A mB = matrix(B) assert_(allclose(linalg.inv(B), mB.I)) assert_(all(array(transpose(B) == mB.T))) assert_(all(array(conjugate(transpose(B)) == mB.H)))
Example #13
Source File: test_linalg.py From lambda-packs with MIT License | 6 votes |
def test_byteorder_check(): # Byte order check should pass for native order if sys.byteorder == 'little': native = '<' else: native = '>' for dtt in (np.float32, np.float64): arr = np.eye(4, dtype=dtt) n_arr = arr.newbyteorder(native) sw_arr = arr.newbyteorder('S').byteswap() assert_equal(arr.dtype.byteorder, '=') for routine in (linalg.inv, linalg.det, linalg.pinv): # Normal call res = routine(arr) # Native but not '=' assert_array_equal(res, routine(n_arr)) # Swapped assert_array_equal(res, routine(sw_arr))
Example #14
Source File: test_defmatrix.py From vnpy_crypto with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** i).A, B)) B = np.dot(B, A) Ainv = linalg.inv(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** -i).A, B)) B = np.dot(B, Ainv) assert_(np.allclose((mA * mA).A, np.dot(A, A))) assert_(np.allclose((mA + mA).A, (A + A))) assert_(np.allclose((3*mA).A, (3*A))) mA2 = matrix(A) mA2 *= 3 assert_(np.allclose(mA2.A, 3*A))
Example #15
Source File: test_defmatrix.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) assert_(np.allclose(linalg.inv(A), mA.I)) assert_(np.all(np.array(np.transpose(A) == mA.T))) assert_(np.all(np.array(np.transpose(A) == mA.H))) assert_(np.all(A == mA.A)) B = A + 2j*A mB = matrix(B) assert_(np.allclose(linalg.inv(B), mB.I)) assert_(np.all(np.array(np.transpose(B) == mB.T))) assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
Example #16
Source File: test_defmatrix.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** i).A, B)) B = np.dot(B, A) Ainv = linalg.inv(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** -i).A, B)) B = np.dot(B, Ainv) assert_(np.allclose((mA * mA).A, np.dot(A, A))) assert_(np.allclose((mA + mA).A, (A + A))) assert_(np.allclose((3*mA).A, (3*A))) mA2 = matrix(A) mA2 *= 3 assert_(np.allclose(mA2.A, 3*A))
Example #17
Source File: anmly_detc.py From touvlo with MIT License | 6 votes |
def multi_gaussian(X, mu, sigma): """Estimates probability that examples belong to Multivariate Gaussian. Args: X (numpy.array): Features' dataset. mu (numpy.array): Mean of each feature/column of X. sigma (numpy.array): Covariance matrix for X. Returns: numpy.array: Probability density function for each example """ m, n = X.shape X = X - mu factor = X.dot(inv(sigma)) factor = multiply(factor, X) factor = - (1 / 2) * sum(factor, axis=1, keepdims=True) p = 1 / (power(2 * pi, n / 2) * sqrt(det(sigma))) p = p * exp(factor) return p
Example #18
Source File: lin_rg.py From touvlo with MIT License | 6 votes |
def reg_normal_eqn(X, y, _lambda): """Produces optimal theta via normal equation. Args: X (numpy.array): Features' dataset plus bias column. y (numpy.array): Column vector of expected values. _lambda (float): The regularization hyperparameter. Returns: numpy.array: Optimized model parameters theta. """ n = X.shape[1] # number of columns, already has bias theta = zeros((n, 1), dtype=float64) L = identity(n) L[0, 0] = 0 X_T = X.T theta = inv(X_T.dot(X) + _lambda * L).dot(X_T).dot(y) return theta
Example #19
Source File: test_linalg.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_byteorder_check(): # Byte order check should pass for native order if sys.byteorder == 'little': native = '<' else: native = '>' for dtt in (np.float32, np.float64): arr = np.eye(4, dtype=dtt) n_arr = arr.newbyteorder(native) sw_arr = arr.newbyteorder('S').byteswap() assert_equal(arr.dtype.byteorder, '=') for routine in (linalg.inv, linalg.det, linalg.pinv): # Normal call res = routine(arr) # Native but not '=' assert_array_equal(res, routine(n_arr)) # Swapped assert_array_equal(res, routine(sw_arr))
Example #20
Source File: lin_rg.py From touvlo with MIT License | 6 votes |
def normal_eqn(X, y): """Produces optimal theta via normal equation. Args: X (numpy.array): Features' dataset plus bias column. y (numpy.array): Column vector of expected values. Raises: LinAlgError Returns: numpy.array: Optimized model parameters theta. """ n = X.shape[1] # number of columns theta = zeros((n, 1), dtype=float64) X_T = X.T theta = inv(X_T.dot(X)).dot(X_T).dot(y) return theta
Example #21
Source File: test_defmatrix.py From vnpy_crypto with MIT License | 6 votes |
def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) assert_(np.allclose(linalg.inv(A), mA.I)) assert_(np.all(np.array(np.transpose(A) == mA.T))) assert_(np.all(np.array(np.transpose(A) == mA.H))) assert_(np.all(A == mA.A)) B = A + 2j*A mB = matrix(B) assert_(np.allclose(linalg.inv(B), mB.I)) assert_(np.all(np.array(np.transpose(B) == mB.T))) assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
Example #22
Source File: multivariate_ols.py From vnpy_crypto with MIT License | 6 votes |
def _multivariate_ols_test(hypotheses, fit_results, exog_names, endog_names): def fn(L, M, C): # .. [1] https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introreg_sect012.htm params, df_resid, inv_cov, sscpr = fit_results # t1 = (L * params)M t1 = L.dot(params).dot(M) - C # H = t1'L(X'X)^L't1 t2 = L.dot(inv_cov).dot(L.T) q = matrix_rank(t2) H = t1.T.dot(inv(t2)).dot(t1) # E = M'(Y'Y - B'(X'X)B)M E = M.T.dot(sscpr).dot(M) return E, H, q, df_resid return _multivariate_test(hypotheses, exog_names, endog_names, fn)
Example #23
Source File: arima_model.py From vnpy_crypto with MIT License | 5 votes |
def bse(self): params = self.params hess = self.model.hessian(params) if len(params) == 1: # can't take an inverse, ensure 1d return np.sqrt(-1./hess[0]) return np.sqrt(np.diag(-inv(hess)))
Example #24
Source File: mixed.py From vnpy_crypto with MIT License | 5 votes |
def fit(self, a, D, sigma): """ Compute unit specific parameters in Laird, Lange, Stram (see help(Unit)). Displays (3.2)-(3.5). """ self._compute_S(D, sigma) #random effect plus error covariance self._compute_W() #inv(S) self._compute_r(a) #residual after removing fixed effects/exogs self._compute_b(D) #? coefficients on random exog, Z ?
Example #25
Source File: ar_model.py From vnpy_crypto with MIT License | 5 votes |
def bse(self): # allow user to specify? if self.model.method == "cmle": # uses different scale/sigma def. resid = self.resid ssr = np.dot(resid, resid) ols_scale = ssr / (self.nobs - self.k_ar - self.k_trend) return np.sqrt(np.diag(self.cov_params(scale=ols_scale))) else: hess = approx_hess(self.params, self.model.loglike) return np.sqrt(np.diag(-np.linalg.inv(hess)))
Example #26
Source File: ar_model.py From vnpy_crypto with MIT License | 5 votes |
def _presample_fit(self, params, start, p, end, y, predictedvalues): """ Return the pre-sample predicted values using the Kalman Filter Notes ----- See predict method for how to use start and p. """ k = self.k_trend # build system matrices T_mat = KalmanFilter.T(params, p, k, p) R_mat = KalmanFilter.R(params, p, k, 0, p) # Initial State mean and variance alpha = np.zeros((p, 1)) Q_0 = dot(inv(identity(p**2)-np.kron(T_mat, T_mat)), dot(R_mat, R_mat.T).ravel('F')) Q_0 = Q_0.reshape(p, p, order='F') # TODO: order might need to be p+k P = Q_0 Z_mat = KalmanFilter.Z(p) for i in range(end): # iterate p-1 times to fit presample v_mat = y[i] - dot(Z_mat, alpha) F_mat = dot(dot(Z_mat, P), Z_mat.T) Finv = 1./F_mat # inv. always scalar K = dot(dot(dot(T_mat, P), Z_mat.T), Finv) # update state alpha = dot(T_mat, alpha) + dot(K, v_mat) L = T_mat - dot(K, Z_mat) P = dot(dot(T_mat, P), L.T) + dot(R_mat, R_mat.T) #P[0,0] += 1 # for MA part, R_mat.R_mat.T above if i >= start - 1: # only record if we ask for it predictedvalues[i + 1 - start] = dot(Z_mat, alpha)
Example #27
Source File: kalmanfilter.py From vnpy_crypto with MIT License | 5 votes |
def _init_diffuse(T,R): m = T.shape[1] # number of states r = R.shape[1] # should also be the number of states? Q_0 = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')) return zeros((m,1)), Q_0.reshape(r,r,order='F')
Example #28
Source File: vecm.py From vnpy_crypto with MIT License | 5 votes |
def stderr_coint(self): """ Standard errors of beta and deterministic terms inside the cointegration relation. Notes ----- See p. 297 in [1]_. Using the rule .. math:: vec(B R) = (B' \\otimes I) vec(R) for two matrices B and R which are compatible for multiplication. This is rule (3) on p. 662 in [1]_. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ r = self.coint_rank _, r1 = _r_matrices(self._delta_y_1_T, self._y_lag1, self._delta_x) r12 = r1[r:] if r12.size == 0: return np.zeros((r, r)) mat1 = inv(r12.dot(r12.T)) mat1 = np.kron(mat1.T, np.identity(r)) det = self.det_coef_coint.shape[0] mat2 = np.kron(np.identity(self.neqs-r+det), inv(chain_dot( self.alpha.T, inv(self.sigma_u), self.alpha))) first_rows = np.zeros((r, r)) last_rows_1d = np.sqrt(np.diag(mat1.dot(mat2))) last_rows = last_rows_1d.reshape((self.neqs-r+det, r), order="F") return vstack((first_rows, last_rows))
Example #29
Source File: mixed.py From vnpy_crypto with MIT License | 5 votes |
def _compute_W(self): """inverse covariance of observations (nobs_i, nobs_i) (JP check) Display (3.2) from Laird, Lange, Stram (see help(Unit)) """ self.W = L.inv(self.S)
Example #30
Source File: utils.py From RSA_pycaffe with MIT License | 5 votes |
def tforminv(trans, uv): Tinv = inv(trans) xy = tformfwd(Tinv, uv) return xy