Python pylab.subplot() Examples

The following are 30 code examples of pylab.subplot(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pylab , or try the search function .
Example #1
Source File: test_turbo_seti.py    From turbo_seti with MIT License 7 votes vote down vote up
def plot_hits(filename_fil, filename_dat):
    """ Plot the hits in a .dat file. """
    table = find_event.read_dat(filename_dat)
    print(table)

    plt.figure(figsize=(10, 8))
    N_hit = len(table)
    if N_hit > 10:
        print("Warning: More than 10 hits found. Only plotting first 10")
        N_hit = 10

    for ii in range(N_hit):
        plt.subplot(N_hit, 1, ii+1)
        plot_event.plot_hit(filename_fil, filename_dat, ii)
    plt.tight_layout()
    plt.savefig(filename_dat.replace('.dat', '.png'))
    plt.show() 
Example #2
Source File: plot.py    From TOPFARM with GNU Affero General Public License v3.0 7 votes vote down vote up
def plot_wt_layout(wt_layout, borders=None, depth=None):
    fig = plt.figure(figsize=(6,6), dpi=2000)
    fs = 14
    ax = plt.subplot(111)

    if depth is not None:
        N = 100
        X, Y = plt.meshgrid(plt.linspace(depth[:,0].min(), depth[:,0].max(), N), 
                            plt.linspace(depth[:,1].min(), depth[:,1].max(), N))
        Z = plt.griddata(depth[:,0],depth[:,1],depth[:,2],X,Y, interp='linear')
        plt.contourf(X,Y,Z, label='depth [m]')
        plt.colorbar().set_label('water depth [m]')
    #ax.plot(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], 'or', label='baseline position')
    
    ax.scatter(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], wt_layout._wt_list('rotor_diameter'), label='baseline position')

    if borders is not None:
        ax.plot(borders[:,0], borders[:,1], 'r--', label='border')
        
    ax.set_xlabel('x [m]'); 
    ax.set_ylabel('y [m]')
    ax.axis('equal');
    ax.legend(loc='lower left') 
Example #3
Source File: image_ocr.py    From pCVR with Apache License 2.0 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #4
Source File: model.py    From facade-segmentation with MIT License 6 votes vote down vote up
def plot(self, overlay_alpha=0.5):
        import pylab as pl
        rows = int(sqrt(self.layers()))
        cols = int(ceil(self.layers()/rows))

        for i in range(rows*cols):
            pl.subplot(rows, cols, i+1)
            pl.axis('off')
            if i >= self.layers():
                continue
            pl.title('{}({})'.format(self.labels[i], i))
            pl.imshow(self.image)
            pl.imshow(colorize(self.features[i].argmax(0),
                               colors=np.array([[0,     0, 255],
                                                [0,   255, 255],
                                                [255, 255, 0],
                                                [255, 0,   0]])),
                      alpha=overlay_alpha) 
Example #5
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #6
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #7
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #8
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #9
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #10
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #11
Source File: fix_shot_times.py    From nba-movement-data with MIT License 6 votes vote down vote up
def plot(t, plots, shot_ind):
    n = len(plots)

    for i in range(0,n):
        label, data = plots[i]

        plt = py.subplot(n, 1, i+1)
        plt.tick_params(labelsize=8)
        py.grid()
        py.xlim([t[0], t[-1]])
        py.ylabel(label)

        py.plot(t, data, 'k-')
        py.scatter(t[shot_ind], data[shot_ind], marker='*', c='g')

    py.xlabel("Time")
    py.show()
    py.close() 
Example #12
Source File: image_ocr.py    From DeepLearning_Wavelet-LSTM with MIT License 6 votes vote down vote up
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close() 
Example #13
Source File: recipe-576501.py    From code with MIT License 6 votes vote down vote up
def __init__(self, norder = 2):
		"""Initializes the class when returning an instance. Pass it the polynomial order. It will 
set up two figure windows, one for the graph the other for the coefficent interface. It will then initialize 
the coefficients to zero and plot the (not so interesting) polynomial."""
		
		self.order = norder
		
		self.c = M.zeros(self.order,'f')
		self.ax = [None]*(self.order-1)#M.zeros(self.order-1,'i') #Coefficent axes
		
		self.ffig = M.figure() #The first figure window has the plot
		self.replotf()
		
		self.cfig = M.figure() #The second figure window has the 
		row = M.ceil(M.sqrt(self.order-1))
		for n in xrange(self.order-1):
			self.ax[n] = M.subplot(row, row, n+1)
			M.setp(self.ax[n],'label', n)
			M.plot([0],[0],'.')
			M.axis([-1, 1, -1, 1]);
			
		self.replotc()
		M.connect('button_press_event', self.click_event) 
Example #14
Source File: plot.py    From TOPFARM with GNU Affero General Public License v3.0 6 votes vote down vote up
def plot_wind_rose(wind_rose):
    fig = plt.figure(figsize=(12,5), dpi=1000)

    # Plotting the wind statistics
    ax1 = plt.subplot(121, polar=True)
    w = 2.*np.pi/len(wind_rose.frequency)
    b = ax1.bar(np.pi/2.0-np.array(wind_rose.wind_directions)/180.*np.pi - w/2.0, 
                np.array(wind_rose.frequency)*100, width=w)

    # Trick to set the right axes (by default it's not oriented as we are used to in the WE community)
    mirror = lambda d: 90.0 - d if d < 90.0 else 360.0 + (90.0 - d)
    ax1.set_xticklabels([u'%d\xb0'%(mirror(d)) for d in linspace(0.0, 360.0,9)[:-1]]);
    ax1.set_title('Wind direction frequency');

    # Plotting the Weibull A parameter
    ax2 = plt.subplot(122, polar=True)
    b = ax2.bar(np.pi/2.0-np.array(wind_rose.wind_directions)/180.*np.pi - w/2.0, 
                np.array(wind_rose.A), width=w)
    ax2.set_xticklabels([u'%d\xb0'%(mirror(d)) for d in linspace(0.0, 360.0,9)[:-1]]);
    ax2.set_title('Weibull A parameter per wind direction sectors'); 
Example #15
Source File: horizontal_walking.py    From pymanoid with GNU General Public License v3.0 5 votes vote down vote up
def plot_mpc_preview(self):
        import pylab
        T = self.mpc_timestep
        h = stance.com.z
        g = -sim.gravity[2]
        trange = [sim.time + k * T for k in range(len(self.x_mpc.X))]
        pylab.ion()
        pylab.clf()
        pylab.subplot(211)
        pylab.plot(trange, [v[0] for v in self.x_mpc.X])
        pylab.plot(trange, [v[0] - v[2] * h / g for v in self.x_mpc.X])
        pylab.subplot(212)
        pylab.plot(trange, [v[0] for v in self.y_mpc.X])
        pylab.plot(trange, [v[0] - v[2] * h / g for v in self.y_mpc.X]) 
Example #16
Source File: __init__.py    From EDeN with MIT License 5 votes vote down vote up
def draw_graph_row(graphs,
                   index=0,
                   contract=True,
                   n_graphs_per_line=5,
                   size=4,
                   xlim=None,
                   ylim=None,
                   **args):
    """draw_graph_row."""
    dim = len(graphs)
    size_y = size
    size_x = size * n_graphs_per_line * args.get('size_x_to_y_ratio', 1)
    plt.figure(figsize=(size_x, size_y))

    if xlim is not None:
        plt.xlim(xlim)
        plt.ylim(ylim)
    else:
        plt.xlim(xmax=3)

    for i in range(dim):
        plt.subplot(1, n_graphs_per_line, i + 1)
        graph = graphs[i]
        draw_graph(graph,
                   size=None,
                   pos=graph.graph.get('pos_dict', None),
                   **args)
    if args.get('file_name', None) is None:
        plt.show()
    else:
        row_file_name = '%d_' % (index) + args['file_name']
        plt.savefig(row_file_name,
                    bbox_inches='tight',
                    transparent=True,
                    pad_inches=0)
        plt.close() 
Example #17
Source File: plot_loss.py    From ophelia with Apache License 2.0 5 votes vote down vote up
def main_work():

    #################################################
      
    # ======== Get stuff from command line ==========

    a = ArgumentParser()
    a.add_argument('-o', dest='outfile', required=True)
    a.add_argument('-l', dest='logfile', required=True)
    opts = a.parse_args()
    
    # ===============================================
    
    log = readlist(opts.logfile)
    log = [line.split('|') for line in log]
    log = [line[3].strip() for line in log if len(line) >=4]
    
    #validation = [line.replace('validation epoch ', '') for line in log if line.startswith('validation epoch')]
    #train = [line.replace('train epoch ', '') for line in log if line.startswith('validation epoch')]

    validation = [line.split(':')[1].strip().split(' ') for line in log if line.startswith('validation epoch')]
    train = [line.split(':')[1].strip().split(' ') for line in log if line.startswith('train epoch')]
    validation = np.array(validation, dtype=float)
    train = np.array(train, dtype=float)
    print train.shape
    print validation.shape

    pl.subplot(211)
    pl.plot(validation.flatten())
    pl.subplot(212)
    pl.plot(train[:,:4])
    pl.show() 
Example #18
Source File: tools.py    From Motiftoolbox with GNU General Public License v2.0 5 votes vote down vote up
def plot_phase_3D(phase_1, phase_2, phase_3, axes, **kwargs):
	from pylab import plot, subplot

	if "PI" in kwargs:	PI = kwargs.pop('PI')
	else:			PI = np.pi

	#assert isinstance(Axes3D)

	dphi_1, dphi_2, dphi_3 = phase_1[1:]-phase_1[:-1], phase_2[1:]-phase_2[:-1], phase_3[1:]-phase_3[:-1]

	j0 = 0
	for j in xrange(1, phase_1.size):
		
		if abs(dphi_1[j-1]) < PI and abs(dphi_2[j-1]) < PI and abs(dphi_3[j-1]) < PI:
			continue

		else:
			x, y, z = phase_1[j0:j], phase_2[j0:j], phase_3[j0:j]
			try:
				axes.plot(x, y, z, '-', **kwargs)

			except:
				pass

			j0 = j

	try:
		x, y, z = phase_1[j0:], phase_2[j0:], phase_3[j0:]
		axes.plot(x, y, z, '-', **kwargs)

	except:
		pass 
Example #19
Source File: fusion_dwb.py    From ImageFusion with MIT License 5 votes vote down vote up
def plot(self):
        plt.figure(0)
        plt.gray()
        plt.subplot(131)
        plt.imshow(self._images[0])
        plt.subplot(132)
        plt.imshow(self._images[1])
        plt.subplot(133)
        plt.imshow(self._fusionImage)
        plt.show() 
Example #20
Source File: fusion_pca.py    From ImageFusion with MIT License 5 votes vote down vote up
def plot(self):
        plt.figure(0)
        plt.gray()
        plt.subplot(131)
        plt.imshow(self._images[0])
        plt.subplot(132)
        plt.imshow(self._images[1])
        plt.subplot(133)
        plt.imshow(self._fusionImage)
        plt.show() 
Example #21
Source File: util.py    From face-magnet with Apache License 2.0 5 votes vote down vote up
def drawModel(mfeat, mode="black", parts=True):
    """
        draw the HOG weight of an object model
    """
    col = ["r", "g", "b"]
    import drawHOG
    lev = len(mfeat)
    if mfeat[0].shape[0] > mfeat[0].shape[1]:
        sy = 1
        sx = lev
    else:
        sy = lev
        sx = 1
    for l in range(lev):
        pylab.subplot(sy, sx, l + 1)
        if mode == "white":
            drawHOG9(mfeat[l])
        elif mode == "black":
            img = drawHOG.drawHOG(mfeat[l])
            pylab.axis("off")
            pylab.imshow(img, cmap=pylab.cm.gray, interpolation="nearest")
        if parts == True:
            for x in range(0, 2 ** l):
                for y in range(0, 2 ** l):
                    boxHOG(mfeat[0].shape[1] * x, mfeat[0].shape[0] * y,
                           mfeat[0].shape[1], mfeat[0].shape[0], col[l], 5 - l) 
Example #22
Source File: epipolar.py    From dfc2019 with MIT License 5 votes vote down vote up
def show_rectified_images(rimg1, rimg2):
    ax = pl.subplot(121)
    pl.imshow(rimg1, cmap=cm.gray)

    # Hack to get the lines span on the left image
    # http://stackoverflow.com/questions/6146290/plotting-a-line-over-several-graphs
    for i in range(1, rimg1.shape[0], int(rimg1.shape[0]/20)):
        pl.axhline(y=i, color='g', xmin=0, xmax=1.2, clip_on=False);

    pl.subplot(122)
    pl.imshow(rimg2, cmap=cm.gray)
    for i in range(1, rimg1.shape[0], int(rimg1.shape[0]/20)):
        pl.axhline(y=i, color='g'); 
Example #23
Source File: plots.py    From ColorPy with GNU Lesser General Public License v2.1 5 votes vote down vote up
def cie_matching_functions_plot ():
    '''Plot the CIE XYZ matching functions, as three spectral subplots.'''
    # get 'spectra' for x,y,z matching functions
    spectrum_x = ciexyz.empty_spectrum()
    spectrum_y = ciexyz.empty_spectrum()
    spectrum_z = ciexyz.empty_spectrum()
    (num_wl, num_cols) = spectrum_x.shape
    for i in range (0, num_wl):
        wl_nm = spectrum_x [i][0]
        xyz = ciexyz.xyz_from_wavelength (wl_nm)
        spectrum_x [i][1] = xyz [0]
        spectrum_y [i][1] = xyz [1]
        spectrum_z [i][1] = xyz [2]
    # Plot three separate subplots, with CIE X in the first, CIE Y in the second, and CIE Z in the third.
    # Label appropriately for the whole plot.
    pylab.clf ()
    # X
    pylab.subplot (3,1,1)
    pylab.title ('1931 CIE XYZ Matching Functions')
    pylab.ylabel ('CIE $X$')
    spectrum_subplot (spectrum_x)
    tighten_x_axis (spectrum_x [:,0])
    # Y
    pylab.subplot (3,1,2)
    pylab.ylabel ('CIE $Y$')
    spectrum_subplot (spectrum_y)
    tighten_x_axis (spectrum_x [:,0])
    # Z
    pylab.subplot (3,1,3)
    pylab.xlabel ('Wavelength (nm)')
    pylab.ylabel ('CIE $Z$')
    spectrum_subplot (spectrum_z)
    tighten_x_axis (spectrum_x [:,0])
    # done
    filename = 'CIEXYZ_Matching'
    print ('Saving plot %s' % str (filename))
    pylab.savefig (filename) 
Example #24
Source File: orbit.py    From Motiftoolbox with GNU General Public License v2.0 5 votes vote down vote up
def show(self, ax=None):
		from pylab import subplot, plot, show

		if ax == None:
			ax = subplot(111)

		phase = np.arange(0., 2.*np.pi+0.01, 0.01)

		X = self.evaluate_orbit(phase)
		ax.plot(phase, X[0])
		ax.plot(phase, X[1]) 
Example #25
Source File: sound.py    From multisensory with Apache License 2.0 5 votes vote down vote up
def test_spectrogram():
  # http://matplotlib.org/examples/pylab_examples/specgram_demo.html
  dt = 1./0.0005
  t = np.arange(0., 20., dt)
  #t = np.arange(0., 3., dt)
  s1 = np.sin((2*np.pi)*100*t)
  s2 = 2 * np.sin((2*np.pi)*400*t)
  s2[-((10 < t) & (t < 12))] = 0
  nse = 0.01 * np.random.randn(len(t))
  if 0:
    x = s1
  else:
    x = s1 + s2 + nse
  freqs, spec, spec_times = make_specgram(x, dt)

  pl.clf()

  ax1 = pl.subplot(211)
  ax1.plot(t, x)

  if 1:
    lsp = spec.copy()
    lsp[spec > 0] = np.log(spec[spec > 0])
    lsp = ut.clip_rescale(lsp, -10, np.percentile(lsp, 99))
  else:
    lsp = spec.copy()
    lsp = ut.clip_rescale(lsp, 0, np.percentile(lsp, 99))

  ax2 = pl.subplot(212, sharex = ax1)
  ax2.imshow(lsp.T, cmap = pl.cm.jet, 
             extent = (0., t[-1], np.min(freqs), np.max(freqs)), 
             aspect = 'auto')

  ig.show(vis_specgram(freqs, spec, spec_times))
  ut.toplevel_locals() 
Example #26
Source File: dataset_float_classes.py    From DEMUD with Apache License 2.0 5 votes vote down vote up
def  plot_item(self, m, ind, x, r, k, label, U,
                 rerr, feature_weights):

    if x == [] or r == []: 
      print "Error: No data in x and/or r."
      return
  
    pylab.clf()
    # xvals, x, and r need to be column vectors
    # xvals represent bin end points, so we need to duplicate most of them
    x = np.repeat(x, 2, axis=0)
    r = np.repeat(r, 2, axis=0)

    pylab.subplot(2,1,1)
    pylab.semilogx(self.xvals, r[0:128], 'r-', label='Expected')
    pylab.semilogx(self.xvals, x[0:128], 'b.-', label='Observations')
    pylab.xlabel('CTN: ' + self.xlabel)
    pylab.ylabel(self.ylabel)
    pylab.legend(loc='upper left', fontsize=10)

    pylab.subplot(2,1,2)
    pylab.semilogx(self.xvals, r[128:], 'r-', label='Expected')
    pylab.semilogx(self.xvals, x[128:], 'b.-', label='Observations')
    pylab.xlabel('CETN: ' + self.xlabel)
    pylab.ylabel(self.ylabel)
    pylab.legend(loc='upper left', fontsize=10)

    pylab.suptitle('DEMUD selection %d (%s), item %d, using K=%d' % \
                (m, label, ind, k))
  
    outdir = os.path.join('results', self.name)
    if not os.path.exists(outdir):
      os.mkdir(outdir)
    figfile = os.path.join(outdir, 'sel-%d-k-%d-(%s).pdf' % (m, k, label))
    pylab.savefig(figfile)
    print 'Wrote plot to %s' % figfile
    pylab.close() 
Example #27
Source File: megafacade.py    From facade-segmentation with MIT License 5 votes vote down vote up
def plot_facade_cuts(self):

        facade_sig = self.facade_edge_scores.sum(0)
        facade_cuts = find_facade_cuts(facade_sig, dilation_amount=self.facade_merge_amount)
        mu = np.mean(facade_sig)
        sigma = np.std(facade_sig)

        w = self.rectified.shape[1]
        pad=10

        gs1 = pl.GridSpec(5, 5)
        gs1.update(wspace=0.5, hspace=0.0)  # set the spacing between axes.

        pl.subplot(gs1[:3, :])
        pl.imshow(self.rectified)
        pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
        pl.axis('off')
        pl.xlim(-pad, w+pad)

        pl.subplot(gs1[3:, :], sharex=pl.gca())
        pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
        pl.fill_between(np.arange(w), 0, np.clip(facade_sig, 0, mu+sigma), color='blue')
        pl.plot(np.arange(w), facade_sig, color='blue')

        pl.vlines(facade_cuts, facade_sig[facade_cuts], pl.xlim()[1], lw=2, color='black')
        pl.scatter(facade_cuts, facade_sig[facade_cuts])

        pl.axis('off')

        pl.hlines(mu, 0, w, linestyle='dashed', color='black')
        pl.text(0, mu, '$\mu$ ', ha='right')

        pl.hlines(mu + sigma, 0, w, linestyle='dashed', color='gray',)
        pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
        pl.xlim(-pad, w+pad) 
Example #28
Source File: analyser.py    From spotpy with MIT License 5 votes vote down vote up
def plot_gelman_rubin(r_hat_values,fig_name='gelman_rub.png'):
    '''Input:  List of R_hat values of chains (see Gelman & Rubin 1992)
       Output: Plot as seen for e.g. in (Sadegh and Vrugt 2014)'''
    import matplotlib.pyplot as plt
    fig=plt.figure(figsize=(16,9))
    ax = plt.subplot(1,1,1)
    ax.plot(r_hat_values)
    ax.plot([1.2]*len(r_hat_values),'k--')
    ax.set_xlabel='r_hat'
    plt.savefig(fig_name,dpi=300) 
Example #29
Source File: analyser.py    From spotpy with MIT License 5 votes vote down vote up
def plot_allmodelruns(modelruns,observations,dates=None, fig_name='bestmodel.png'):
    '''Input:  Array of modelruns and list of Observations
       Output: Plot with all modelruns as a line and dots with the Observations
    '''
    import matplotlib.pyplot as plt
    fig=plt.figure(figsize=(16,9))
    ax = plt.subplot(1,1,1)
    if dates is not None:
        for i in range(len(modelruns)):
            if i==0:
                ax.plot(dates, modelruns[i],'b',alpha=.05,label='Simulations')
            else:
                ax.plot(dates, modelruns[i],'b',alpha=.05)

    else:
        for i in range(len(modelruns)):
            if i==0:
                ax.plot(modelruns[i],'b',alpha=.05,label='Simulations')
            else:
                ax.plot(modelruns[i],'b',alpha=.05)
    ax.plot(observations,'ro',label='Evaluation')
    ax.legend()
    ax.set_xlabel = 'Best model simulation'
    ax.set_ylabel = 'Evaluation points'
    ax.set_title  = 'Maximum objectivefunction of Simulations'
    fig.savefig(fig_name)
    text='The figure as been saved as '+fig_name
    print(text) 
Example #30
Source File: analyser.py    From spotpy with MIT License 5 votes vote down vote up
def plot_posterior_parametertrace(results,parameternames=None,threshold=0.1, fig_name='Posterior_parametertrace.png'):
    """
    Get a plot with all values of a given parameter in your result array.
    The plot will be saved as a .png file.

    :results: Expects an numpy array which should of an index "like" for objectivefunctions
    :type: array

    :parameternames: A List of Strings with parameternames. A line object will be drawn for each String in the List.
    :type: list

    :return: Plot of all traces of the given parameternames.
    :rtype: figure
    """
    import matplotlib.pyplot as plt
    fig=plt.figure(figsize=(16,9))

    results=sort_like(results)
    if not parameternames:
        parameternames=get_parameternames(results)
    names=''
    i=1
    for name in parameternames:
        ax = plt.subplot(len(parameternames),1,i)
        ax.plot(results['par'+name][int(len(results)*threshold):],label=name)
        names+=name+'_'
        ax.set_ylabel(name)
        if i==len(parameternames):
            ax.set_xlabel('Repetitions')
        if i==1:
            ax.set_title('Parametertrace')
        ax.legend()
        i+=1
    fig.savefig(fig_name)
    text='The figure as been saved as '+fig_name
    print(text)