Python numpy.vstack() Examples
The following are 30
code examples of numpy.vstack().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: BDA.py From transferlearning with MIT License | 7 votes |
def proxy_a_distance(source_X, target_X): """ Compute the Proxy-A-Distance of a source/target representation """ nb_source = np.shape(source_X)[0] nb_target = np.shape(target_X)[0] train_X = np.vstack((source_X, target_X)) train_Y = np.hstack((np.zeros(nb_source, dtype=int), np.ones(nb_target, dtype=int))) clf = svm.LinearSVC(random_state=0) clf.fit(train_X, train_Y) y_pred = clf.predict(train_X) error = metrics.mean_absolute_error(train_Y, y_pred) dist = 2 * (1 - 2 * error) return dist
Example #2
Source File: tools_fri_doa_plane.py From FRIDA with MIT License | 6 votes |
def mtx_updated_G(phi_recon, M, mtx_amp2visi_ri, mtx_fri2visi_ri): """ Update the linear transformation matrix that links the FRI sequence to the visibilities by using the reconstructed Dirac locations. :param phi_recon: the reconstructed Dirac locations (azimuths) :param M: the Fourier series expansion is between -M to M :param p_mic_x: a vector that contains microphones' x-coordinates :param p_mic_y: a vector that contains microphones' y-coordinates :param mtx_freq2visi: the linear mapping from Fourier series to visibilities :return: """ L = 2 * M + 1 ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F') phi_recon = np.reshape(phi_recon, (1, -1), order='F') mtx_amp2freq = np.exp(-1j * ms_half * phi_recon) # size: (M + 1) x K mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :])) # size: (2M + 1) x K mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0] # projection mtx_freq2visi to the null space of mtx_fri2amp mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T, linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0]) G_updated = np.dot(mtx_amp2visi_ri, mtx_fri2amp_ri) + \ np.dot(mtx_fri2visi_ri, mtx_null_proj) return G_updated
Example #3
Source File: TCA.py From transferlearning with MIT License | 6 votes |
def fit(self, Xs, Xt): ''' Transform Xs and Xt :param Xs: ns * n_feature, source feature :param Xt: nt * n_feature, target feature :return: Xs_new and Xt_new after TCA ''' X = np.hstack((Xs.T, Xt.T)) X /= np.linalg.norm(X, axis=0) m, n = X.shape ns, nt = len(Xs), len(Xt) e = np.vstack((1 / ns * np.ones((ns, 1)), -1 / nt * np.ones((nt, 1)))) M = e * e.T M = M / np.linalg.norm(M, 'fro') H = np.eye(n) - 1 / n * np.ones((n, n)) K = kernel(self.kernel_type, X, None, gamma=self.gamma) n_eye = m if self.kernel_type == 'primal' else n a, b = np.linalg.multi_dot([K, M, K.T]) + self.lamb * np.eye(n_eye), np.linalg.multi_dot([K, H, K.T]) w, V = scipy.linalg.eig(a, b) ind = np.argsort(w) A = V[:, ind[:self.dim]] Z = np.dot(A.T, K) Z /= np.linalg.norm(Z, axis=0) Xs_new, Xt_new = Z[:, :ns].T, Z[:, ns:].T return Xs_new, Xt_new
Example #4
Source File: snippets.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)): """ A wrapper function to generate anchors given different scales Also return the number of anchors in variable 'length' """ anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) A = anchors.shape[0] shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() K = shifts.shape[0] # width changes faster, so here it is H, W, C anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False) length = np.int32(anchors.shape[0]) return anchors, length
Example #5
Source File: coroOnlyScheduler.py From EXOSIMS with BSD 3-Clause "New" or "Revised" License | 6 votes |
def scheduleRevisit(self, sInd, smin, det, pInds): """A Helper Method for scheduling revisits after observation detection Args: sInd - sInd of the star just detected smin - minimum separation of the planet to star of planet just detected det - pInds - Indices of planets around target star Return: updates self.starRevisit attribute """ TK = self.TimeKeeping t_rev = TK.currentTimeNorm.copy() + self.revisit_wait[sInd] # finally, populate the revisit list (NOTE: sInd becomes a float) revisit = np.array([sInd, t_rev.to('day').value]) if self.starRevisit.size == 0:#If starRevisit has nothing in it self.starRevisit = np.array([revisit])#initialize sterRevisit else: revInd = np.where(self.starRevisit[:,0] == sInd)[0]#indices of the first column of the starRevisit list containing sInd if revInd.size == 0: self.starRevisit = np.vstack((self.starRevisit, revisit)) else: self.starRevisit[revInd,1] = revisit[1]#over
Example #6
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def ex3(replication=2): f = open(path + "ex3.txt") train_data = np.loadtxt(f, delimiter=",") f = open(path + "ex3_test.txt") test_data = np.loadtxt(f, delimiter=",") x_train = np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1) y_train = train_data[:, 2] x_test = np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1) y_test = test_data[:, 2] for i in range(replication - 1): x_train = np.vstack((x_train, np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1))) y_train = np.hstack((y_train, train_data[:, 2])) x_test = np.vstack((x_test, np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1))) y_test = np.hstack((y_test, test_data[:, 2])) return x_train, y_train, x_test, y_test
Example #7
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def regression_data(): f = open(path + "regression_data1.txt") data = np.loadtxt(f, delimiter=",") x1 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y1 = data[:, 1] f = open(path + "regression_data2.txt") data = np.loadtxt(f, delimiter=",") x2 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y2 = data[:, 1] x1 = np.vstack((x1, x2)) y1 = np.hstack((y1, y2)) f = open(path + "regression_data_test1.txt") data = np.loadtxt(f, delimiter=",") x1_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y1_test = data[:, 1] f = open(path + "regression_data_test2.txt") data = np.loadtxt(f, delimiter=",") x2_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y2_test = data[:, 1] x1_test = np.vstack((x1_test, x2_test)) y1_test = np.hstack((y1_test, y2_test)) return x1, y1, x1_test, y1_test
Example #8
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def iris(replication=2): f = open(path + "iris.txt") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_train = np.array(data[:, range(0, 4)], dtype=np.float) y_train = data[:, 4] for j in range(replication - 1): x_train = np.vstack([x_train, data[:, range(0, 4)]]) y_train = np.hstack([y_train, data[:, 4]]) x_train = np.array(x_train, dtype=np.float) f = open(path + "iris_test.txt") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_test = np.array(data[:, range(0, 4)], dtype=np.float) y_test = data[:, 4] for j in range(replication - 1): x_test = np.vstack([x_test, data[:, range(0, 4)]]) y_test = np.hstack([y_test, data[:, 4]]) x_test = np.array(x_test, dtype=np.float) return x_train, y_train, x_test, y_test
Example #9
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def breastcancer_disc(replication=2): f = open(path + "breast_cancer_wisconsin_disc.txt") data = np.loadtxt(f, delimiter=",") x_train = data[:, range(1, 10)] y_train = data[:, 10] for j in range(replication - 1): x_train = np.vstack([x_train, data[:, range(1, 10)]]) y_train = np.hstack([y_train, data[:, 10]]) f = open(path + "breast_cancer_wisconsin_disc_test.txt") data = np.loadtxt(f, delimiter=",") x_test = data[:, range(1, 10)] y_test = data[:, 10] for j in range(replication - 1): x_test = np.vstack([x_test, data[:, range(1, 10)]]) y_test = np.hstack([y_test, data[:, 10]]) return x_train, y_train, x_test, y_test
Example #10
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def breastcancer_cont(replication=2): f = open(path + "breast_cancer_wisconsin_cont.txt", "r") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_train = np.array(data[:, range(0, 9)]) y_train = np.array(data[:, 9]) for j in range(replication - 1): x_train = np.vstack([x_train, data[:, range(0, 9)]]) y_train = np.hstack([y_train, data[:, 9]]) x_train = np.array(x_train, dtype=np.float) f = open(path + "breast_cancer_wisconsin_cont_test.txt") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_test = np.array(data[:, range(0, 9)]) y_test = np.array(data[:, 9]) for j in range(replication - 1): x_test = np.vstack([x_test, data[:, range(0, 9)]]) y_test = np.hstack([y_test, data[:, 9]]) x_test = np.array(x_test, dtype=np.float) return x_train, y_train, x_test, y_test
Example #11
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def image_reslice(image, spec, method=None, fill=0, dtype=None, weights=None, image_type=None): ''' image_reslice(image, spec) yields a duplicate of the given image resliced to have the voxels indicated by the given image spec. Note that spec may be an image itself. Optional arguments that can be passed to image_interpolate() (asside from affine) are allowed here and are passed through. ''' if image_type is None and is_image(image): image_type = to_image_type(image) spec = to_image_spec(spec) image = to_image(image) # we make a big mesh and interpolate at these points... imsh = spec['image_shape'] (args, kw) = ([np.arange(n) for n in imsh[:3]], {'indexing': 'ij'}) ijk = np.asarray([u.flatten() for u in np.meshgrid(*args, **kw)]) ijk = np.dot(spec['affine'], np.vstack([ijk, np.ones([1,ijk.shape[1]])]))[:3] # interpolate here... u = image_interpolate(image, ijk, method=method, fill=fill, dtype=dtype, weights=weights) return to_image((np.reshape(u, imsh), spec), image_type=image_type)
Example #12
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def apply_affine(aff, coords): ''' apply_affine(affine, coords) yields the result of applying the given affine transformation to the given coordinate or coordinates. This function expects coords to be a (dims X n) matrix but if the first dimension is neither 2 nor 3, coords.T is used; i.e.: apply_affine(affine3x3, coords2xN) ==> newcoords2xN apply_affine(affine4x4, coords3xN) ==> newcoords3xN apply_affine(affine3x3, coordsNx2) ==> newcoordsNx2 (for N != 2) apply_affine(affine4x4, coordsNx3) ==> newcoordsNx3 (for N != 3) ''' if aff is None: return coords (coords,tr) = (np.asanyarray(coords), False) if len(coords.shape) == 1: return np.squeeze(apply_affine(np.reshape(coords, (-1,1)), aff)) elif len(coords.shape) > 2: raise ValueError('cannot apply affine to ND-array for N > 2') if len(coords) == 2: aff = to_affine(aff, 2) elif len(coords) == 3: aff = to_affine(aff, 3) else: (coords,aff,tr) = (coords.T, to_affine(aff, coords.shape[1]), True) r = np.dot(aff, np.vstack([coords, np.ones([1,coords.shape[1]])]))[:-1] return r.T if tr else r
Example #13
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def subcurve(self, t0, t1): ''' curve.subcurve(t0, t1) yields a curve-spline object that is equivalent to the given curve but that extends from curve(t0) to curve(t1) only. ''' # if t1 is less than t0, then we want to actually do this in reverse... if t1 == t0: raise ValueError('Cannot take subcurve of a point') if t1 < t0: tt = self.curve_length() return self.reverse().subcurve(tt - t0, tt - t1) idx = [ii for (ii,t) in enumerate(self.t) if t0 < t and t < t1] pt0 = self(t0) pt1 = self(t1) coords = np.vstack([[pt0], self.coordinates.T[idx], [pt1]]) ts = np.concatenate([[t0], self.t[idx], [t1]]) dists = None if self.distances is None else np.diff(ts) return CurveSpline( coords.T, order=self.order, smoothing=self.smoothing, periodic=False, distances=dists, meta_data=self.meta_data)
Example #14
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01): # Receptive Fields Summary W = layer.W wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) fieldsN = min(fields.shape[0],maxFields) perRow = int(math.floor(math.sqrt(fieldsN))) perColumn = int(math.ceil(fieldsN/float(perRow))) fig = mpl.figure(figName); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,fieldsN): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
Example #15
Source File: digit_data_loader.py From transferlearning with MIT License | 5 votes |
def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image # print(img.shape) if img.shape[0] != 1: # print(img) img = Image.fromarray(np.uint8(np.asarray(img.transpose((1, 2, 0))))) # elif img.shape[0] == 1: im = np.uint8(np.asarray(img)) # print(np.vstack([im,im,im]).shape) im = np.vstack([im, im, im]).transpose((1, 2, 0)) img = Image.fromarray(im) if self.target_transform is not None: target = self.target_transform(target) if self.transform is not None: img = self.transform(img) # return img, target return img, target
Example #16
Source File: video_metrics.py From fine-lm with MIT License | 5 votes |
def compute_all_metrics_statistics(all_results): """Computes statistics of metrics across multiple decodings.""" statistics = {} for key in all_results[0].keys(): values = [result[key] for result in all_results] values = np.vstack(values) statistics[key + "_MEAN"] = np.mean(values, axis=0) statistics[key + "_STD"] = np.std(values, axis=0) statistics[key + "_MIN"] = np.min(values, axis=0) statistics[key + "_MAX"] = np.max(values, axis=0) return statistics
Example #17
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary W = layer.output wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
Example #18
Source File: generate_anchors.py From cascade-rcnn_Pytorch with MIT License | 5 votes |
def generate_anchors(base_size=16, ratios=[0.5, 1, 2], scales=2**np.arange(3, 6)): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ base_anchor = np.array([1, 1, base_size, base_size]) - 1 ratio_anchors = _ratio_enum(base_anchor, ratios) anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales) for i in xrange(ratio_anchors.shape[0])]) return anchors
Example #19
Source File: intra_alignment.py From transferlearning with MIT License | 5 votes |
def getGFKDim(Xs, Xt): Pss = PCA().fit(Xs).components_.T Pts = PCA().fit(Xt).components_.T Psstt = PCA().fit(np.vstack((Xs, Xt))).components_.T DIM = round(Xs.shape[1]*0.5) res = -1 for d in range(1, DIM+1): Ps = Pss[:, :d] Pt = Pts[:, :d] Pst = Psstt[:, :d] alpha1 = getAngle(Ps, Pst, d) alpha2 = getAngle(Pt, Pst, d) D = (alpha1 + alpha2) * 0.5 check = [round(D[1, dd]*100) == 100 for dd in range(d)] if True in check: res = list(map(lambda i: i == True, check)).index(True) return res
Example #20
Source File: intra_alignment.py From transferlearning with MIT License | 5 votes |
def PCA_map(Xs, Xt): dim = getGFKDim(Xs, Xt) X = np.vstack((Xs, Xt)) X_new = PCA().fit_transform(X)[:, :dim] Xs_new = X_new[:Xs.shape[0], :] Xt_new = X_new[Xs.shape[0]:, :] return Xs_new, Xt_new
Example #21
Source File: bbox.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def bbox_transform(ex_rois, gt_rois, box_stds): """ compute bounding box regression targets from ex_rois to gt_rois :param ex_rois: [N, 4] :param gt_rois: [N, 4] :return: [N, 4] """ assert ex_rois.shape[0] == gt_rois.shape[0], 'inconsistent rois number' ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * (ex_widths - 1.0) ex_ctr_y = ex_rois[:, 1] + 0.5 * (ex_heights - 1.0) gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * (gt_widths - 1.0) gt_ctr_y = gt_rois[:, 1] + 0.5 * (gt_heights - 1.0) targets_dx = (gt_ctr_x - ex_ctr_x) / (ex_widths + 1e-14) / box_stds[0] targets_dy = (gt_ctr_y - ex_ctr_y) / (ex_heights + 1e-14) / box_stds[1] targets_dw = np.log(gt_widths / ex_widths) / box_stds[2] targets_dh = np.log(gt_heights / ex_heights) / box_stds[3] targets = np.vstack((targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets
Example #22
Source File: proxy_a_distance.py From transferlearning with MIT License | 5 votes |
def proxy_a_distance(source_X, target_X, verbose=False): """ Compute the Proxy-A-Distance of a source/target representation """ nb_source = np.shape(source_X)[0] nb_target = np.shape(target_X)[0] if verbose: print('PAD on', (nb_source, nb_target), 'examples') C_list = np.logspace(-5, 4, 10) half_source, half_target = int(nb_source/2), int(nb_target/2) train_X = np.vstack((source_X[0:half_source, :], target_X[0:half_target, :])) train_Y = np.hstack((np.zeros(half_source, dtype=int), np.ones(half_target, dtype=int))) test_X = np.vstack((source_X[half_source:, :], target_X[half_target:, :])) test_Y = np.hstack((np.zeros(nb_source - half_source, dtype=int), np.ones(nb_target - half_target, dtype=int))) best_risk = 1.0 for C in C_list: clf = svm.SVC(C=C, kernel='linear', verbose=False) clf.fit(train_X, train_Y) train_risk = np.mean(clf.predict(train_X) != train_Y) test_risk = np.mean(clf.predict(test_X) != test_Y) if verbose: print('[ PAD C = %f ] train risk: %f test risk: %f' % (C, train_risk, test_risk)) if test_risk > .5: test_risk = 1. - test_risk best_risk = min(best_risk, test_risk) return 2 * (1. - 2 * best_risk)
Example #23
Source File: anchor.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _generate_base_anchors(base_size, scales, ratios): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ base_anchor = np.array([1, 1, base_size, base_size]) - 1 ratio_anchors = AnchorGenerator._ratio_enum(base_anchor, ratios) anchors = np.vstack([AnchorGenerator._scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) return anchors
Example #24
Source File: anchor.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def generate(self, feat_height, feat_width): shift_x = np.arange(0, feat_width) * self._feat_stride shift_y = np.arange(0, feat_height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = self._num_anchors K = shifts.shape[0] all_anchors = self._base_anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)) all_anchors = all_anchors.reshape((K * A, 4)) return all_anchors
Example #25
Source File: negativesample.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _refill_queue(self): """Fetch another batch from the source, and shuffle it to make negative samples. """ original = self._sourcedata.next().data # List of NDArrays: one per input batch_size = original[0].shape[0] num_inputs = len(original) #Start with positive examples, copied straight outdata = [[o.asnumpy()] for o in original] # list of lists of numpy arrays outlabels = [np.ones(batch_size) * self.positive_label] # list of numpy arrays # The inner list of both is the set of samples. We'll recombine later. # Construct negative samples. for _ in range(self.sample_ratio): shuffled = self._shuffle_batch(original) for i,d in enumerate(shuffled): outdata[i].append(d) outlabels.append(np.ones(batch_size) * self.negative_label) def stacker(x): if len(x[0].shape)==1: return np.hstack(x) else: return np.vstack(x) outdata = [stacker(x) for x in outdata] # Single tall vectors outlabels = stacker(outlabels) # Record-level shuffle so the negatives are mixed in. def shuffler(x, idx): return np.take(x,idx,0) shuf_idx = np.arange(len(outlabels)) np.random.shuffle(shuf_idx) outdata = [shuffler(o,shuf_idx) for o in outdata] outlabels = shuffler(outlabels,shuf_idx) self._push_queue(outdata,outlabels)
Example #26
Source File: malware.py From trees with Apache License 2.0 | 5 votes |
def graph_ROC(max_ACC, TP, FP, name="STD"): aTP = np.vstack(TP) n = len(TP) mean_TP = np.mean(aTP, axis=0) stderr_TP = np.std(aTP, axis=0) / (n ** 0.5) var_TP = np.var(aTP, axis=0) max_TP = mean_TP + 3 * stderr_TP min_TP = mean_TP - 3 * stderr_TP # sTP = sum(TP) / len(TP) sFP = FP[0] print len(sFP), len(mean_TP), len(TP[0]) smax_ACC = np.mean(max_ACC) plt.cla() plt.clf() plt.close() plt.plot(sFP, mean_TP) plt.fill_between(sFP, min_TP, max_TP, color='black', alpha=0.2) plt.xlim((0,0.1)) plt.ylim((0,1)) plt.title('ROC Curve (accuracy=%.3f)' % smax_ACC) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.savefig(r"../scratch/"+name+"_ROC_curve.pdf", bbox_inches='tight') # Write the data to the file f = file(r"../scratch/"+name+"_ROC_curve.csv", "w") f.write("FalsePositive,TruePositive,std_err, var, n\n") for fp, tp, err, var in zip(sFP, mean_TP, stderr_TP, var_TP): f.write("%s, %s, %s, %s, %s\n" % (fp, tp, err, var, n)) f.close()
Example #27
Source File: eval_metric.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _insert(self, key, records, count): """ Insert records according to key """ if key not in self.records: assert key not in self.counts self.records[key] = records self.counts[key] = count else: self.records[key] = np.vstack((self.records[key], records)) assert key in self.counts self.counts[key] += count
Example #28
Source File: input_from_history.py From padasip with MIT License | 5 votes |
def input_from_history(a, n, bias=False): """ This is function for creation of input matrix. **Args:** * `a` : series (1 dimensional array) * `n` : size of input matrix row (int). It means how many samples \ of previous history you want to use \ as the filter input. It also represents the filter length. **Kwargs:** * `bias` : decides if the bias is used (Boolean). If True, \ array of all ones is appended as a last column to matrix `x`. \ So matrix `x` has `n`+1 columns. **Returns:** * `x` : input matrix (2 dimensional array) \ constructed from an array `a`. The length of `x` \ is calculated as length of `a` - `n` + 1. \ If the `bias` is used, then the amount of columns is `n` if not then \ amount of columns is `n`+1). """ if not type(n) == int: raise ValueError('The argument n must be int.') if not n > 0: raise ValueError('The argument n must be greater than 0') try: a = np.array(a, dtype="float64") except: raise ValueError('The argument a is not numpy array or similar.') x = np.array([a[i:i+n] for i in range(len(a)-n+1)]) if bias: x = np.vstack((x.T, np.ones(len(x)))).T return x
Example #29
Source File: test_tcpr.py From libTLDA with MIT License | 5 votes |
def test_predict(): """Test for making predictions.""" X = np.vstack((rnd.randn(5, 2), rnd.randn(5, 2)+1)) y = np.hstack((np.zeros((5,)), np.ones((5,)))) Z = np.vstack((rnd.randn(5, 2)-1, rnd.randn(5, 2)+2)) clf = TargetContrastivePessimisticClassifier(l2=0.1) clf.fit(X, y, Z) u_pred = clf.predict(Z) labels = np.unique(y) assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0
Example #30
Source File: label_prop.py From transferlearning with MIT License | 5 votes |
def label_prop(C, nt, Dct, lp="linear"): #Inputs: # C : Number of share classes between src and tar # nt : Number of target domain samples # Dct : All d_ct in matrix form, nt * C # lp : Type of linear programming: linear (default) | binary #Outputs: # Mcj : all M_ct in matrix form, m * C intcon = C * nt Aeq = np.zeros([nt, intcon]) Beq = np.ones([nt, 1]) for i in range(nt): Aeq[i, i*C:(i+1)*C] = 1; D_vec = np.reshape(Dct, (1, intcon)) CC = np.asarray(D_vec, dtype=np.double) A = np.array([]) B = -1 * np.ones([C, 1]) for i in range(C): all_zeros = np.zeros([1, intcon]) for j in range(i, C * nt, C): all_zeros[0][j] = -1 if i == 0: A = all_zeros else: A = np.vstack((A, all_zeros)) if lp == "binary": print("not implemented yet!") else: res = linprog(CC,A,B,Aeq,Beq, bounds=tuple((0, 1) for _ in range(intcon))) Mct_vec = res.get("x")[0:C*nt] Mcj = Mct_vec.reshape((C,nt), order="F").T return Mcj