Python numpy.row_stack() Examples
The following are 30
code examples of numpy.row_stack().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: augmentation.py From face_landmark with Apache License 2.0 | 8 votes |
def Perspective_aug(src,strength,label=None): image = src pts_base = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]]) pts1=np.random.rand(4, 2)*random.uniform(-strength,strength)+pts_base pts1=pts1.astype(np.float32) #pts1 =np.float32([[56, 65], [368, 52], [28, 387], [389, 398]]) M = cv2.getPerspectiveTransform(pts1, pts_base) trans_img = cv2.warpPerspective(image, M, (src.shape[1], src.shape[0])) label_rotated=None if label is not None: label=label.T full_label = np.row_stack((label, np.ones(shape=(1, label.shape[1])))) label_rotated = np.dot(M, full_label) label_rotated=label_rotated.astype(np.int32) label_rotated=label_rotated.T return trans_img,label_rotated
Example #2
Source File: base.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def get_raw_state(self): """ Default state observation composer. Returns: and updates time-embedded environment state observation as [n,4] numpy matrix, where: 4 - number of signal features == state_shape[1], n - time-embedding length == state_shape[0] == <set by user>. Note: `self.raw_state` is used to render environment `human` mode and should not be modified. """ self.raw_state = np.row_stack( ( np.frombuffer(self.data.open.get(size=self.time_dim)), np.frombuffer(self.data.high.get(size=self.time_dim)), np.frombuffer(self.data.low.get(size=self.time_dim)), np.frombuffer(self.data.close.get(size=self.time_dim)), ) ).T return self.raw_state
Example #3
Source File: util.py From pymoo with Apache License 2.0 | 6 votes |
def normalize(data, bounds, reverse=False, return_bounds=False): from pymoo.util.normalization import normalize as _normalize _F = np.row_stack([e[0] for e in data]) if bounds is None: bounds = (_F.min(axis=0), _F.max(axis=0)) to_plot = [] for k in range(len(data)): F = _normalize(data[k][0], bounds[0], bounds[1]) if reverse: F = 1 - F to_plot.append([F, data[k][1]]) if return_bounds: return to_plot, bounds else: return to_plot
Example #4
Source File: evaluator.py From YOLOV3 with MIT License | 6 votes |
def get_bbox(self, img, multi_test=False, flip_test=False): if multi_test: test_input_sizes = range(320, 640, 96) bboxes_list = [] for test_input_size in test_input_sizes: valid_scale =(0, np.inf) bboxes_list.append(self.__predict(img, test_input_size, valid_scale)) if flip_test: bboxes_flip = self.__predict(img[:, ::-1], test_input_size, valid_scale) bboxes_flip[:, [0, 2]] = img.shape[1] - bboxes_flip[:, [2, 0]] bboxes_list.append(bboxes_flip) bboxes = np.row_stack(bboxes_list) else: bboxes = self.__predict(img, self.val_shape, (0, np.inf)) bboxes = nms(bboxes, self.conf_thresh, self.nms_thresh) return bboxes
Example #5
Source File: star_coordinate.py From pymoo with Apache License 2.0 | 6 votes |
def _do(self): # initial a figure with a single plot self.init_figure() # equal axis length and no ticks equal_axis(self.ax) no_ticks(self.ax) # determine the overall scale of points _F = np.row_stack([e[0] for e in self.to_plot]) _min, _max = _F.min(axis=0), _F.max(axis=0) V = get_uniform_points_around_circle(self.n_dim) plot_axes_arrow(self.ax, V, extend_factor=self.axis_extension, **{**self.axis_style, **self.arrow_style}) plot_axis_labels(self.ax, V, self.get_labels(), **self.axis_label_style) # normalize in range for this plot - here no implicit normalization as in radviz bounds = parse_bounds(self.bounds, self.n_dim) to_plot_norm = normalize(self.to_plot, bounds) for k, (F, kwargs) in enumerate(to_plot_norm): N = (F[..., None] * V).sum(axis=1) self.ax.scatter(N[:, 0], N[:, 1], **kwargs)
Example #6
Source File: test_basic.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_polygamma(self): poly2 = special.polygamma(2,1) poly3 = special.polygamma(3,1) assert_almost_equal(poly2,-2.4041138063,10) assert_almost_equal(poly3,6.4939394023,10) # Test polygamma(0, x) == psi(x) x = [2, 3, 1.1e14] assert_almost_equal(special.polygamma(0, x), special.psi(x)) # Test broadcasting n = [0, 1, 2] x = [0.5, 1.5, 2.5] expected = [-1.9635100260214238, 0.93480220054467933, -0.23620405164172739] assert_almost_equal(special.polygamma(n, x), expected) expected = np.row_stack([expected]*2) assert_almost_equal(special.polygamma(n, np.row_stack([x]*2)), expected) assert_almost_equal(special.polygamma(np.row_stack([n]*2), x), expected)
Example #7
Source File: fracture.py From fracture with MIT License | 6 votes |
def _append_tmp_sources(self): from scipy.spatial import cKDTree as kdt from scipy.spatial import Delaunay as triag sources = row_stack([self.sources]+self.tmp_sources) tree = kdt(sources) self.sources = sources self.tree = tree self.tmp_sources = [] self.tri = triag( self.sources, incremental=False, qhull_options='QJ Qc' ) self.num_sources = len(self.sources) return len(sources)
Example #8
Source File: point_crossover.py From pymoo with Apache License 2.0 | 6 votes |
def _do(self, problem, X, **kwargs): # get the X of parents and count the matings _, n_matings, n_var = X.shape # start point of crossover r = np.row_stack([np.random.permutation(n_var - 1) + 1 for _ in range(n_matings)])[:, :self.n_points] r.sort(axis=1) r = np.column_stack([r, np.full(n_matings, n_var)]) # the mask do to the crossover M = np.full((n_matings, n_var), False) # create for each individual the crossover range for i in range(n_matings): j = 0 while j < r.shape[1] - 1: a, b = r[i, j], r[i, j + 1] M[i, a:b] = True j += 2 _X = crossover_mask(X, M) return _X
Example #9
Source File: reduction.py From pymoo with Apache License 2.0 | 6 votes |
def _do(self): rnd = sample_on_unit_simplex(self.n_sample_points, self.n_dim, unit_simplex_mapping=self.sampling) def h(n): return get_partition_closest_to_points(n, self.n_dim) H = h(self.n_points) E = get_reference_directions("das-dennis", self.n_dim, n_partitions=H) E = E[np.any(E == 0, axis=1)] # add the edge coordinates X = np.row_stack([E, rnd]) I = select_points_with_maximum_distance(X, self.n_points, selected=list(range((len(E))))) centroids = X[I].copy() if self.kmeans: #centroids = kmeans(X, centroids, self.kmeans_max_iter, self.kmeans_a_tol, 0) centroids = kmeans(X, centroids, self.kmeans_max_iter, self.kmeans_a_tol, len(E)) return centroids
Example #10
Source File: performance.py From pymoo with Apache License 2.0 | 6 votes |
def mean_mean(z): for row in np.eye(z.shape[1]): if not np.any(np.all(row == z, axis=1)): z = np.row_stack([z, row]) n_points, n_dim = z.shape D = vectorized_cdist(z, z) np.fill_diagonal(D, np.inf) k = n_dim - 1 I = D.argsort(axis=1)[:, :k] first = np.column_stack([np.arange(n_points) for _ in range(k)]) val = np.mean(D[first, I], axis=1) return val.mean()
Example #11
Source File: wfg_pareto_fronts.py From pymoo with Apache License 2.0 | 6 votes |
def calc_pareto_front(problem, ref_dirs): n_pareto_points = 200 np.random.seed(1) pf = problem.pareto_front(n_pareto_points=n_pareto_points, use_cache=False) # survival = ReferenceDirectionSurvival(ref_dirs) survival = RankAndCrowdingSurvival() for i in range(1000): _pf = problem.pareto_front(n_pareto_points=n_pareto_points, use_cache=False) F = np.row_stack([pf, _pf]) pop = Population().new("F", F) pop = survival.do(problem, pop, n_pareto_points // 2) pf = pop.get("F") return pf
Example #12
Source File: test_basic.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_hyp0f1(self): # scalar input assert_allclose(special.hyp0f1(2.5, 0.5), 1.21482702689997, rtol=1e-12) assert_allclose(special.hyp0f1(2.5, 0), 1.0, rtol=1e-15) # float input, expected values match mpmath x = special.hyp0f1(3.0, [-1.5, -1, 0, 1, 1.5]) expected = np.array([0.58493659229143, 0.70566805723127, 1.0, 1.37789689539747, 1.60373685288480]) assert_allclose(x, expected, rtol=1e-12) # complex input x = special.hyp0f1(3.0, np.array([-1.5, -1, 0, 1, 1.5]) + 0.j) assert_allclose(x, expected.astype(complex), rtol=1e-12) # test broadcasting x1 = [0.5, 1.5, 2.5] x2 = [0, 1, 0.5] x = special.hyp0f1(x1, x2) expected = [1.0, 1.8134302039235093, 1.21482702689997] assert_allclose(x, expected, rtol=1e-12) x = special.hyp0f1(np.row_stack([x1] * 2), x2) assert_allclose(x, np.row_stack([expected] * 2), rtol=1e-12) assert_raises(ValueError, special.hyp0f1, np.row_stack([x1] * 3), [0, 1])
Example #13
Source File: test_0018_fermi_energy.py From pyscf with Apache License 2.0 | 6 votes |
def test_fermi_energy_spin_resolved_even_kpoints(self): """ This is to test the determination of Fermi level in spin-resolved case""" ee = np.row_stack((np.linspace(-10.1, 100.0, 1003), np.linspace(-10.2, 100.0, 1003), np.linspace(-10.3, 100.0, 1003), np.linspace(-10.4, 100.0, 1003))).reshape((4,1,1003)) nelec = 20.0 telec = 0.02 nkpts = ee.shape[0] nspin = ee.shape[-2] #print(ee) fermi_energy = get_fermi_energy(ee, nelec, telec) occ = (3.0-nspin)*fermi_dirac_occupations(telec, ee, fermi_energy) #print(occ) #print(occ.sum()/nkpts) #print(fermi_energy) self.assertAlmostEqual(occ.sum()/nkpts, 20.0) self.assertAlmostEqual(fermi_energy, -9.2045998319213016)
Example #14
Source File: augmentation.py From face_landmark with Apache License 2.0 | 6 votes |
def Affine_aug(src,strength,label=None): image = src pts_base = np.float32([[10,100],[200,50],[100,250]]) pts1 = np.random.rand(3, 2) * random.uniform(-strength, strength) + pts_base pts1 = pts1.astype(np.float32) M = cv2.getAffineTransform(pts1, pts_base) trans_img = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]) , borderMode=cv2.BORDER_CONSTANT, borderValue=cfg.DATA.PIXEL_MEAN) label_rotated=None if label is not None: label=label.T full_label = np.row_stack((label, np.ones(shape=(1, label.shape[1])))) label_rotated = np.dot(M, full_label) #label_rotated = label_rotated.astype(np.int32) label_rotated=label_rotated.T return trans_img,label_rotated
Example #15
Source File: test_basic.py From Computable with MIT License | 6 votes |
def test_polygamma(self): poly2 = special.polygamma(2,1) poly3 = special.polygamma(3,1) assert_almost_equal(poly2,-2.4041138063,10) assert_almost_equal(poly3,6.4939394023,10) # Test polygamma(0, x) == psi(x) x = [2, 3, 1.1e14] assert_almost_equal(special.polygamma(0, x), special.psi(x)) # Test broadcasting n = [0, 1, 2] x = [0.5, 1.5, 2.5] expected = [-1.9635100260214238, 0.93480220054467933, -0.23620405164172739] assert_almost_equal(special.polygamma(n, x), expected) expected = np.row_stack([expected]*2) assert_almost_equal(special.polygamma(n, np.row_stack([x]*2)), expected) assert_almost_equal(special.polygamma(np.row_stack([n]*2), x), expected)
Example #16
Source File: glyphs.py From sand-glyphs with MIT License | 6 votes |
def _get_glyph(gnum, height, width, shift_prob, shift_size): if isinstance(gnum, list): n = randint(*gnum) else: n = gnum glyph = random_points_in_circle( n, 0, 0, 0.5 )*array((width, height), 'float') _spatial_sort(glyph) if random()<shift_prob: shift = ((-1)**randint(0,2))*shift_size*height glyph[:,1] += shift if random()<0.5: ii = randint(0,n-1,size=(1)) xy = glyph[ii,:] glyph = row_stack((glyph, xy)) return glyph
Example #17
Source File: test_basic.py From Computable with MIT License | 6 votes |
def test_hyp0f1(self): # scalar input assert_allclose(special.hyp0f1(2.5, 0.5), 1.21482702689997, rtol=1e-12) assert_allclose(special.hyp0f1(2.5, 0), 1.0, rtol=1e-15) # float input, expected values match mpmath x = special.hyp0f1(3.0, [-1.5, -1, 0, 1, 1.5]) expected = np.array([0.58493659229143, 0.70566805723127, 1.0, 1.37789689539747, 1.60373685288480]) assert_allclose(x, expected, rtol=1e-12) # complex input x = special.hyp0f1(3.0, np.array([-1.5, -1, 0, 1, 1.5]) + 0.j) assert_allclose(x, expected.astype(np.complex), rtol=1e-12) # test broadcasting x1 = [0.5, 1.5, 2.5] x2 = [0, 1, 0.5] x = special.hyp0f1(x1, x2) expected = [1.0, 1.8134302039235093, 1.21482702689997] assert_allclose(x, expected, rtol=1e-12) x = special.hyp0f1(np.row_stack([x1] * 2), x2) assert_allclose(x, np.row_stack([expected] * 2), rtol=1e-12) assert_raises(ValueError, special.hyp0f1, np.row_stack([x1] * 3), [0, 1])
Example #18
Source File: bls_addinput.py From Broad-Learning-System with MIT License | 6 votes |
def adding_nodes(self, data, label, mapstep = 1, enhencestep = 1, batchsize = 'auto'): if batchsize == 'auto': batchsize = data.shape[1] mappingdata = self.mapping_generator.transform(data) inputdata = self.transform(data) localmap_generator = node_generator() extramap_nodes = localmap_generator.generator_nodes(data,mapstep,batchsize,self._map_function) localenhence_generator = node_generator() extraenh_nodes = localenhence_generator.generator_nodes(mappingdata,enhencestep,batchsize,self._map_function) extra_nodes = np.column_stack((extramap_nodes,extraenh_nodes)) D = self.pesuedoinverse.dot(extra_nodes) C = extra_nodes - inputdata.dot(D) BT = self.pinv(C) if (C == 0).any() else np.mat((D.T.dot(D)+np.eye(D.shape[1]))).I.dot(D.T).dot(self.pesuedoinverse) self.W = np.row_stack((self.W-D.dot(BT).dot(label),BT.dot(label))) self.pesuedoinverse = np.row_stack((self.pesuedoinverse - D.dot(BT),BT)) self.local_mapgeneratorlist.append(localmap_generator) self.local_enhgeneratorlist.append(localenhence_generator)
Example #19
Source File: constraint.py From vnpy_crypto with MIT License | 6 votes |
def combine(cls, constraints): """Create a new LinearConstraint by ANDing together several existing LinearConstraints. :arg constraints: An iterable of LinearConstraint objects. Their :attr:`variable_names` attributes must all match. :returns: A new LinearConstraint object. """ if not constraints: raise ValueError("no constraints specified") variable_names = constraints[0].variable_names for constraint in constraints: if constraint.variable_names != variable_names: raise ValueError("variable names don't match") coefs = np.row_stack([c.coefs for c in constraints]) constants = np.row_stack([c.constants for c in constraints]) return cls(variable_names, coefs, constants)
Example #20
Source File: bls_enhmap.py From Broad-Learning-System with MIT License | 6 votes |
def adding_nodes(self, data, label, mapstep = 1, enhencestep = 1, batchsize = 'auto'): if batchsize == 'auto': batchsize = data.shape[1] mappingdata = self.mapping_generator.transform(data) inputdata = self.transform(data) localmap_generator = node_generator() extramap_nodes = localmap_generator.generator_nodes(data,mapstep,batchsize,self._map_function) localenhence_generator = node_generator() extraenh_nodes = localenhence_generator.generator_nodes(mappingdata,enhencestep,batchsize,self._map_function) extra_nodes = np.column_stack((extramap_nodes,extraenh_nodes)) D = self.pesuedoinverse.dot(extra_nodes) C = extra_nodes - inputdata.dot(D) BT = self.pinv(C) if (C == 0).any() else np.mat((D.T.dot(D)+np.eye(D.shape[1]))).I.dot(D.T).dot(self.pesuedoinverse) self.W = np.row_stack((self.W-D.dot(BT).dot(label),BT.dot(label))) self.pesuedoinverse = np.row_stack((self.pesuedoinverse - D.dot(BT),BT)) self.local_mapgeneratorlist.append(localmap_generator) self.local_enhgeneratorlist.append(localenhence_generator)
Example #21
Source File: bls_enhence.py From Broad-Learning-System with MIT License | 6 votes |
def addingenhence_nodes(self, data, label, step = 1, batchsize = 'auto'): if batchsize == 'auto': batchsize = data.shape[1] mappingdata = self.mapping_generator.transform(data) inputdata = self.transform(data) localenhence_generator = node_generator() extraenhence_nodes = localenhence_generator.generator_nodes(mappingdata,step,batchsize,self._enhence_function) D = self.pesuedoinverse.dot(extraenhence_nodes) C = extraenhence_nodes - inputdata.dot(D) BT = self.pinv(C) if (C == 0).any() else np.mat((D.T.dot(D)+np.eye(D.shape[1]))).I.dot(D.T).dot(self.pesuedoinverse) self.W = np.row_stack((self.W-D.dot(BT).dot(label),BT.dot(label))) self.enhence_generator.update(localenhence_generator.Wlist,localenhence_generator.blist) self.pesuedoinverse = np.row_stack((self.pesuedoinverse - D.dot(BT),BT))
Example #22
Source File: base.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def get_raw_state(self): """ Default state observation composer. Returns: and updates time-embedded environment state observation as [n,4] numpy matrix, where: 4 - number of signal features == state_shape[1], n - time-embedding length == state_shape[0] == <set by user>. Note: `self.raw_state` is used to render environment `human` mode and should not be modified. """ self.raw_state = np.row_stack( ( np.frombuffer(self.data.open.get(size=self.time_dim)), np.frombuffer(self.data.high.get(size=self.time_dim)), np.frombuffer(self.data.low.get(size=self.time_dim)), np.frombuffer(self.data.close.get(size=self.time_dim)), ) ).T return self.raw_state
Example #23
Source File: Blending_Regression_pm25.py From Machine-Learning-for-Beginner-by-Python3 with MIT License | 6 votes |
def DataStru(self): self.datai['train'] = np.row_stack((np.array(self.yanzhneg_pr), np.array(self.yanzhneg_real))) # 此处添加行 self.datai['predict'] = np.row_stack((np.array(self.predi), np.array(self.preal))) # 将训练数据转置 datapst = self.datai['train'].T # 为训练数据定义DataFrame的列名 mingcheng = ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['train']) - 1))] + [self.zi] self.datai['train'] = pd.DataFrame(datapst, columns=mingcheng) # 将预测数据转置 dapst = self.datai['predict'].T # 为训练数据定义DataFrame的列名 mingche= ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['predict']) - 1))] + [self.zi] self.datai['predict'] = pd.DataFrame(dapst, columns=mingche) return print('二层的数据准备完毕') # 定义均方误差的函数
Example #24
Source File: Blending_Classify_adult.py From Machine-Learning-for-Beginner-by-Python3 with MIT License | 6 votes |
def DataStru(self): self.datai['train'] = np.row_stack((np.array(self.yanzhneg_pr), np.array(self.yanzhneg_real))) # 此处添加行 self.datai['predict'] = np.row_stack((np.array(self.predi), np.array(self.preal))) # 将训练数据转置 datapst = self.datai['train'].T # 为训练数据定义DataFrame的列名 mingcheng = ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['train']) - 1))] + [self.zi] self.datai['train'] = pd.DataFrame(datapst, columns=mingcheng) # 将预测数据转置 dapst = self.datai['predict'].T # 为训练数据定义DataFrame的列名 mingche= ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['predict']) - 1))] + [self.zi] self.datai['predict'] = pd.DataFrame(dapst, columns=mingche) return print('二层的数据准备完毕') # 创建将预测的多维的数字类别转化为一维原始名称类别的函数
Example #25
Source File: Stacking_Regression_pm25.py From Machine-Learning-for-Beginner-by-Python3 with MIT License | 6 votes |
def DataStru(self): self.datai['train'] = np.row_stack((np.array(self.yanzhneg_pr), np.array(self.yanzhneg_real))) # 此处添加行 self.datai['predict'] = np.row_stack((np.array(self.predi), np.array(self.preal))) # 将训练数据转置 datapst = self.datai['train'].T # 为训练数据定义DataFrame的列名 mingcheng = ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['train']) - 1))] + [self.zi] self.datai['train'] = pd.DataFrame(datapst, columns=mingcheng) # 将预测数据转置 dapst = self.datai['predict'].T # 为训练数据定义DataFrame的列名 mingche= ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['predict']) - 1))] + [self.zi] self.datai['predict'] = pd.DataFrame(dapst, columns=mingche) return print('二层的数据准备完毕') # 定义均方误差的函数
Example #26
Source File: Stacking_Classify_adult.py From Machine-Learning-for-Beginner-by-Python3 with MIT License | 6 votes |
def DataStru(self): self.datai['train'] = np.row_stack((np.array(self.yanzhneg_pr), np.array(self.yanzhneg_real))) # 此处添加行 self.datai['predict'] = np.row_stack((np.array(self.predi), np.array(self.preal))) # 将训练数据转置 datapst = self.datai['train'].T # 为训练数据定义DataFrame的列名 mingcheng = ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['train']) - 1))] + [self.zi] self.datai['train'] = pd.DataFrame(datapst, columns=mingcheng) # 将预测数据转置 dapst = self.datai['predict'].T # 为训练数据定义DataFrame的列名 mingche= ['第%s个模型列' % str(dd) for dd in list(range(len(self.datai['predict']) - 1))] + [self.zi] self.datai['predict'] = pd.DataFrame(dapst, columns=mingche) return print('二层的数据准备完毕') # 创建将预测的多维的数字类别转化为一维原始名称类别的函数
Example #27
Source File: base.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def get_raw_state(self): """ Default state observation composer. Returns: and updates time-embedded environment state observation as [n, 4] numpy matrix, where: 4 - number of signal features == state_shape[1], n - time-embedding length == state_shape[0] == <set by user>. Note: `self.raw_state` is used to render environment `human` mode and should not be modified. """ self.raw_state = np.row_stack( ( np.frombuffer(self.data.open.get(size=self.time_dim)), np.frombuffer(self.data.high.get(size=self.time_dim)), np.frombuffer(self.data.low.get(size=self.time_dim)), np.frombuffer(self.data.close.get(size=self.time_dim)), ) ).T return self.raw_state
Example #28
Source File: base.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def get_raw_state(self): """ Default state observation composer. Returns: and updates time-embedded environment state observation as [n, 4] numpy matrix, where: 4 - number of signal features == state_shape[1], n - time-embedding length == state_shape[0] == <set by user>. Note: `self.raw_state` is used to render environment `human` mode and should not be modified. """ self.raw_state = np.row_stack( ( np.frombuffer(self.data.open.get(size=self.time_dim)), np.frombuffer(self.data.high.get(size=self.time_dim)), np.frombuffer(self.data.low.get(size=self.time_dim)), np.frombuffer(self.data.close.get(size=self.time_dim)), ) ).T return self.raw_state
Example #29
Source File: test_0018_fermi_energy.py From pyscf with Apache License 2.0 | 6 votes |
def test_fermi_energy_spin_resolved_even_kpoints_spin2(self): """ This is to test the determination of Fermi level in spin-resolved case""" ee = np.row_stack((np.linspace(-10.1, 100.0, 1003), np.linspace(-10.2, 100.0, 1003), np.linspace(-10.3, 100.0, 1003), np.linspace(-10.4, 100.0, 1003))).reshape((2,2,1003)) nelec = 20.0 telec = 0.02 nkpts = ee.shape[0] nspin = ee.shape[-2] #print(ee) fermi_energy = get_fermi_energy(ee, nelec, telec) occ = (3.0-nspin)*fermi_dirac_occupations(telec, ee, fermi_energy) #print(occ) #print(occ.sum()/nkpts) #print(fermi_energy) self.assertAlmostEqual(occ.sum()/nkpts, 20.0) self.assertAlmostEqual(fermi_energy, -9.2045998319213016)
Example #30
Source File: traffic_junction_env.py From IC3Net with MIT License | 5 votes |
def _unittest_path(self,paths): for i, p in enumerate(paths[:-1]): next_dif = p - np.row_stack([p[1:], p[-1]]) next_dif = np.abs(next_dif[:-1]) step_jump = np.sum(next_dif, axis =1) if np.any(step_jump != 1): print("Any", p, i) return False if not np.all(step_jump == 1): print("All", p, i) return False return True