Python scipy.dot() Examples
The following are 30
code examples of scipy.dot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: lobpcg.py From Computable with MIT License | 7 votes |
def b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False): """Internal.""" import scipy.linalg as sla if blockVectorBV is None: if B is not None: blockVectorBV = B(blockVectorV) else: blockVectorBV = blockVectorV # Shared data!!! gramVBV = sp.dot(blockVectorV.T, blockVectorBV) gramVBV = sla.cholesky(gramVBV) gramVBV = sla.inv(gramVBV, overwrite_a=True) # gramVBV is now R^{-1}. blockVectorV = sp.dot(blockVectorV, gramVBV) if B is not None: blockVectorBV = sp.dot(blockVectorBV, gramVBV) if retInvR: return blockVectorV, blockVectorBV, gramVBV else: return blockVectorV, blockVectorBV
Example #2
Source File: recipe-576547.py From code with MIT License | 6 votes |
def coupling_optim(y,t): creation=s.zeros(n_bin) destruction=s.zeros(n_bin) #now I try to rewrite this in a more optimized way destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\ #the destruction of k-mers kyn = kernel*y[:,s.newaxis]*y[s.newaxis,:] for k in xrange(n_bin): creation[k] = s.sum(kyn[s.arange(k),k-s.arange(k)-1]) creation=0.5*creation out=creation+destruction return out #Now I go for the optimal optimization of the chi_{i,j,k} coefficients used by Garrick for # dealing with a non-uniform grid.
Example #3
Source File: gp.py From GPPVAE with Apache License 2.0 | 6 votes |
def generate_data(N, S, L): # generate genetics G = 1.0 * (sp.rand(N, S) < 0.2) G -= G.mean(0) G /= G.std(0) * sp.sqrt(G.shape[1]) # generate latent phenotypes Zg = sp.dot(G, sp.randn(G.shape[1], L)) Zn = sp.randn(N, L) # generate variance exapleind vg = sp.linspace(0.8, 0, L) # rescale and sum Zg *= sp.sqrt(vg / Zg.var(0)) Zn *= sp.sqrt((1 - vg) / Zn.var(0)) Z = Zg + Zn return Z, G
Example #4
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateSchiultz(mol): """ ################################################################# Calculation of Schiultz number ---->Tsch(log value) Usage: result=CalculateSchiultz(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ Distance = numpy.array(Chem.GetDistanceMatrix(mol), "d") Adjacent = numpy.array(Chem.GetAdjacencyMatrix(mol), "d") VertexDegree = sum(Adjacent) return sum(scipy.dot((Distance + Adjacent), VertexDegree))
Example #5
Source File: rotator.py From factor_analyzer with GNU General Public License v2.0 | 6 votes |
def _quartimax_obj(self, loadings): """ Quartimax function objective. Parameters ---------- loadings : array-like The loading matrix Returns ------- gradient_dict : dict A dictionary with - grad : np.array The gradient. - criterion : float The value of the criterion for the objective. """ gradient = -loadings**3 criterion = -np.sum(np.diag(np.dot((loadings**2).T, loadings**2))) / 4 return {'grad': gradient, 'criterion': criterion}
Example #6
Source File: rotator.py From factor_analyzer with GNU General Public License v2.0 | 6 votes |
def _oblimin_obj(self, loadings): """ The Oblimin function objective. Parameters ---------- loadings : array-like The loading matrix Returns ------- gradient_dict : dict A dictionary with - grad : np.array The gradient. - criterion : float The value of the criterion for the objective. """ X = np.dot(loadings**2, np.eye(loadings.shape[1]) != 1) if (self.gamma != 0): p = loadings.shape[0] X = np.diag(np.full(1, p)) - np.dot(np.zeros((p, p)), X) gradient = loadings * X criterion = np.sum(loadings**2 * X) / 4 return {'grad': gradient, 'criterion': criterion}
Example #7
Source File: rotator.py From factor_analyzer with GNU General Public License v2.0 | 6 votes |
def _quartimin_obj(self, loadings): """ Quartimin function objective. Parameters ---------- loadings : array-like The loading matrix Returns ------- gradient_dict : dict A dictionary with - grad : np.array The gradient. - criterion : float The value of the criterion for the objective. """ X = np.dot(loadings**2, np.eye(loadings.shape[1]) != 1) gradient = loadings * X criterion = np.sum(loadings**2 * X) / 4 return {'grad': gradient, 'criterion': criterion}
Example #8
Source File: recipe-576547.py From code with MIT License | 6 votes |
def coupling_optim_garrick(y,t): creation=s.zeros(n_bin) destruction=s.zeros(n_bin) #now I try to rewrite this in a more optimized way destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\ #the destruction of k-mers for k in xrange(n_bin): kyn = (kernel*f_garrick[:,:,k])*y[:,s.newaxis]*y[s.newaxis,:] creation[k] = s.sum(kyn) creation=0.5*creation out=creation+destruction return out #Now I work with the function for espressing smoluchowski equation when a uniform grid is used
Example #9
Source File: gmres.py From pygbe with BSD 3-Clause "New" or "Revised" License | 6 votes |
def apply_givens(Q, v, k): """ Apply the first k Givens rotations in Q to the vector v. Arguments --------- Q: list, list of consecutive 2x2 Givens rotations v: array, vector to apply the rotations to k: int, number of rotations to apply Returns ------- v: array, that is changed in place. """ for j in range(k): Qloc = Q[j] v[j:j+2] = scipy.dot(Qloc, v[j:j+2])
Example #10
Source File: coregistration_utilities.py From eo-learn with MIT License | 5 votes |
def score(self, idx, warp_matrix): """ Estimate the registration error of estimated transformation matrix :param idx: List of points used to estimate the transformation :param warp_matrix: Matrix estimating Euler trasnformation :return: Square root of Target Registration Error """ # Transform source points with estimated transformation trg_fit = scipy.dot(warp_matrix, np.concatenate((self.src_pts[idx, :], np.ones((len(idx), 1))), axis=1).T).T # Compute error in transformation err_per_point = np.sqrt(np.sum((self.trg_pts[idx, :] - trg_fit[:, :2])**2, axis=1)) # sum squared error per row return err_per_point
Example #11
Source File: rotator.py From factor_analyzer with GNU General Public License v2.0 | 5 votes |
def _equamax_obj(self, loadings): """ Equamax function objective. Parameters ---------- loadings : array-like The loading matrix Returns ------- gradient_dict : dict A dictionary with - grad : np.array The gradient. - criterion : float The value of the criterion for the objective. """ p, k = loadings.shape N = np.ones(k) - np.eye(k) M = np.ones(p) - np.eye(p) loadings_squared = loadings**2 f1 = (1 - self.kappa) * np.sum(np.diag(np.dot(loadings_squared.T, np.dot(loadings_squared, N)))) / 4 f2 = self.kappa * np.sum(np.diag(np.dot(loadings_squared.T, np.dot(M, loadings_squared)))) / 4 gradient = ((1 - self.kappa) * loadings * np.dot(loadings_squared, N) + self.kappa * loadings * np.dot(M, loadings_squared)) criterion = f1 + f2 return {'grad': gradient, 'criterion': criterion}
Example #12
Source File: ld.py From ldpred with MIT License | 5 votes |
def _calculate_D(snps, snp_i, snp, start_i, stop_i, ld_dict, ld_scores): m, n = snps.shape X = snps[start_i: stop_i] D_i = sp.dot(snp, X.T) / n D_i_shrunk = shrink_r2_mat(D_i,n) r2s = D_i ** 2 ld_dict[snp_i] = D_i_shrunk lds_i = sp.sum(r2s - (1 - r2s) / (n - 2), dtype='float32') ld_scores[snp_i] = lds_i
Example #13
Source File: compute.py From Faces with GNU General Public License v3.0 | 5 votes |
def compute(image_paths, image_path, n_eigenfaces=NUM_IMAGE, width=IMAGE_WIDTH, height=IMAGE_HEIGHT): input_path = image_path image_matrix = np.vstack([_reshape(image, height, width) for image in _imread(image_paths)]) print image_matrix.size img1 = np.vstack([_reshape(image, height, width) for image in _imread(input_path)]) pca = PCA(n_components=n_eigenfaces).fit(image_matrix) eigenvectors = pca.components_.reshape((n_eigenfaces, height, width)) eigenvalues = pca.explained_variance_ratio_ data_mean = pca.mean_.reshape((height, width)) po = pca.transform(img1) eigenvectors = image_matrix.reshape(2, 100, 100) ccount = 1 recons1 = po[0][0] * eigenvectors[0] while ccount < n_eigenfaces: recons1 += po[0][ccount] * eigenvectors[ccount] ccount += 1 rimage = np.reshape(img1[0], (100, 100)) diff1 = rimage - recons1 det1 = np.linalg.det(diff1) a = rimage b = recons1 c = dot(a, b) / np.linalg.norm(a) / np.linalg.norm(b) n_m, n_0 = compare_images(a, b) n_m = np.mean(n_m) n_0 = np.mean(n_0) return n_0 * 1.0 / a.size
Example #14
Source File: MR.py From mr_saliency with GNU General Public License v2.0 | 5 votes |
def __MR_saliency(self,aff,indictor): return sp.dot(aff,indictor)
Example #15
Source File: lobpcg.py From Computable with MIT License | 5 votes |
def applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY): """Internal. Changes blockVectorV in place.""" gramYBV = sp.dot(blockVectorBY.T, blockVectorV) import scipy.linalg as sla tmp = sla.cho_solve(factYBY, gramYBV) blockVectorV -= sp.dot(blockVectorY, tmp)
Example #16
Source File: train_gppvae.py From GPPVAE with Apache License 2.0 | 5 votes |
def eval_step(vae, gp, vm, val_queue, Zm, Vt, Vv): rv = {} with torch.no_grad(): _X = vm.x().data.cpu().numpy() _W = vm.v().data.cpu().numpy() covs = {"XX": sp.dot(_X, _X.T), "WW": sp.dot(_W, _W.T)} rv["vars"] = gp.get_vs().data.cpu().numpy() # out of sample vs = gp.get_vs() U, UBi, _ = gp.U_UBi_Shb([Vt], vs) Kiz = gp.solve(Zm, U, UBi, vs) Zo = vs[0] * Vv.mm(Vt.transpose(0, 1).mm(Kiz)) mse_out = Variable(torch.zeros(Vv.shape[0], 1), requires_grad=False).cuda() mse_val = Variable(torch.zeros(Vv.shape[0], 1), requires_grad=False).cuda() for batch_i, data in enumerate(val_queue): idxs = data[-1].cuda() Yv = data[0].cuda() Zv = vae.encode(Yv)[0].detach() Yr = vae.decode(Zv) Yo = vae.decode(Zo[idxs]) mse_out[idxs] = ( ((Yv - Yo) ** 2).view(Yv.shape[0], -1).mean(1)[:, None].detach() ) mse_val[idxs] = ( ((Yv - Yr) ** 2).view(Yv.shape[0], -1).mean(1)[:, None].detach() ) # store a few examples if batch_i == 0: imgs = {} imgs["Yv"] = Yv[:24].data.cpu().numpy().transpose(0, 2, 3, 1) imgs["Yr"] = Yr[:24].data.cpu().numpy().transpose(0, 2, 3, 1) imgs["Yo"] = Yo[:24].data.cpu().numpy().transpose(0, 2, 3, 1) rv["mse_out"] = float(mse_out.data.mean().cpu()) rv["mse_val"] = float(mse_val.data.mean().cpu()) return rv, imgs, covs
Example #17
Source File: polynomial.py From mirage with BSD 3-Clause "New" or "Revised" License | 5 votes |
def polyfit(u, x, y, order): '''Fit polynomial to a set of u values on an x, y grid u is a function u(x, y) being a polynomial of the form u = a[i, j] x**(i-j) y**j. x and y can be on a grid or be arbitrary values''' # First set up x and y powers for each coefficient px = [] py = [] for i in range(order+1): for j in range(i+1): px.append(i-j) py.append(j) terms = len(px) #print terms, ' terms for order ', order #print px #print py # Make up matrix and vector vector = scipy.zeros((terms)) mat = scipy.zeros((terms, terms)) for i in range(terms): vector[i] = (u*x**px[i]*y**py[i]).sum() for j in range(terms): mat[i, j] = (x**px[i]*y**py[i]*x**px[j]*y**py[j]).sum() #print 'Vector', vector #print 'Matrix' #print mat imat = linalg.inv(mat) #print 'Inverse' #print imat # Check that inversion worked #print scipy.dot(mat, imat) coeffs = scipy.dot(imat, vector) return coeffs
Example #18
Source File: polynomial.py From mirage with BSD 3-Clause "New" or "Revised" License | 5 votes |
def invert(a, b, u, v, n, verbose=False): '''Given that order n polynomials of (x, y) have the result (u, v), find (x, y) Newton Raphson method in two dimensions''' tol = 1.0e-10 err = 1.0 #Initial guesses - Linear approximation det = a[1]*b[2] - a[2]*b[1] x0 = (b[2]*u-a[2]*v)/det y0 = (-b[1]*u + a[1]*v)/det if verbose: print('Initial guesses', x0, y0) x = x0 y = y0 X = scipy.array([x, y]) iter = 0 while err > tol: f1 = scipy.array([poly(a, x, y, n)-u, poly(b, x, y, n)-v]) j = scipy.array([[dpdx(a, x, y, n), dpdy(a, x, y, n)], [dpdx(b, x, y, n), dpdy(b, x, y, n)]]) invj = scipy.linalg.inv(j) X = X - scipy.dot(invj, f1) if verbose: print('[X1, Y1]', X) x1 = X[0] y1 = X[1] err = hypot(x-x1, y-y1) if verbose: print('Error %10.2e' % err) [x, y] = [x1, y1] iter += 1 return (x, y, err, iter)
Example #19
Source File: c9_19_treynor_ratio.py From Python-for-Finance-Second-Edition with MIT License | 5 votes |
def treynor(R,w): betaP=portfolioBeta(betaGiven,w) mean_return=sp.mean(R,axis=0) ret = sp.array(mean_return) return (sp.dot(w,ret) - rf)/betaP # # function 4: for given n-1 weights, return a negative sharpe ratio
Example #20
Source File: c9_23_efficient_based_on_sortino_ratio.py From Python-for-Finance-Second-Edition with MIT License | 5 votes |
def sortino(R,w): mean_return=sp.mean(R,axis=0) ret = sp.array(mean_return) LPSD=LPSD_f(R,rf) return (sp.dot(w,ret) - rf)/LPSD # function 4: for given n-1 weights, return a negative sharpe ratio
Example #21
Source File: c9_21_optimal_portfolio_based_on_Sortino_ratio.py From Python-for-Finance-Second-Edition with MIT License | 5 votes |
def treynor(R,w): betaP=portfolioBeta(betaGiven,w) mean_return=sp.mean(R,axis=0) ret = sp.array(mean_return) return (sp.dot(w,ret) - rf)/betaP # function 4: for given n-1 weights, return a negative sharpe ratio
Example #22
Source File: c9_21_optimal_portfolio_based_on_Sortino_ratio.py From Python-for-Finance-Second-Edition with MIT License | 5 votes |
def portfolioBeta(betaGiven,w): #print("betaGiven=",betaGiven,"w=",w) return sp.dot(betaGiven,w) # function 3: estimate Treynor
Example #23
Source File: c9_18_sharpe_ratio.py From Python-for-Finance-Second-Edition with MIT License | 5 votes |
def sharpe(R,w): var = portfolio_var(R,w) mean_return=sp.mean(R,axis=0) ret = sp.array(mean_return) return (sp.dot(w,ret) - rf)/sp.sqrt(var) # function 4: for given n-1 weights, return a negative sharpe ratio
Example #24
Source File: c9_44_impact_of_correlation_2stock_portfolio.py From Python-for-Finance-Second-Edition with MIT License | 5 votes |
def portfolioRet(R,w): mean_return=sp.mean(R,axis=0) ret = sp.array(mean_return) return sp.dot(w,ret)
Example #25
Source File: recipe-576547.py From code with MIT License | 5 votes |
def total_mass_conservation(number_mat, vol_grid,box_volume): ini_mass=s.dot(number_mat[0,:],vol_grid)*box_volume fin_mass=s.dot(number_mat[-1,:],vol_grid)*box_volume mass_conservation=(ini_mass-fin_mass)/ini_mass results=s.array([ini_mass,fin_mass,mass_conservation]) return results
Example #26
Source File: numpy_utils.py From ARNs with GNU General Public License v3.0 | 5 votes |
def cosine_similarity(a,b): a = mat(a) b = mat(b) c = dot(a,b.T)/linalg.norm(a)/linalg.norm(b) return c[0,0]
Example #27
Source File: auc_regressor.py From xam with MIT License | 5 votes |
def score(self, X, y): fpr, tpr, _ = metrics.roc_curve(y, sp.dot(X, self.coef_)) return metrics.auc(fpr, tpr)
Example #28
Source File: auc_regressor.py From xam with MIT License | 5 votes |
def predict(self, X): return sp.dot(X, self.coef_)
Example #29
Source File: auc_regressor.py From xam with MIT License | 5 votes |
def _auc_loss(self, coef, X, y): fpr, tpr, _ = metrics.roc_curve(y, sp.dot(X, coef)) return -metrics.auc(fpr, tpr)
Example #30
Source File: sound_waves.py From qmpy with MIT License | 5 votes |
def dir_cosines(dir,coords=sp.identity(3)): """Returns a vector containing the direction cosines between vector dir, and the coordinate system coords. Default coordinate system is an orthonormal cartesian coordinate system.""" cosines = sp.dot(coords,dir)/linalg.norm(dir) return cosines