Python numpy.iinfo() Examples
The following are 30
code examples of numpy.iinfo().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: segmentation.py From ffn with Apache License 2.0 | 6 votes |
def reduce_id_bits(segmentation): """Reduces the number of bits used for IDs. Assumes that one additional ID beyond the max of 'segmentation' is necessary (used by GALA to mark boundary areas). Args: segmentation: ndarray of int type Returns: segmentation ndarray converted to minimal uint type large enough to keep all the IDs. """ max_id = segmentation.max() if max_id <= np.iinfo(np.uint8).max: return segmentation.astype(np.uint8) elif max_id <= np.iinfo(np.uint16).max: return segmentation.astype(np.uint16) elif max_id <= np.iinfo(np.uint32).max: return segmentation.astype(np.uint32)
Example #2
Source File: utils.py From contextualbandits with BSD 2-Clause "Simplified" License | 6 votes |
def fit(self, X, y): if X.shape[0] == 0: return self elif np.unique(y).shape[0] <= 1: self.update_aux(y) return self seed = self.random_state.integers(np.iinfo(np.int32).max) self.model.set_params(random_state = seed) self.model.fit(X, y) n_nodes = self.model.tree_.node_count self.pos = np.zeros(n_nodes, dtype=ctypes.c_long) self.neg = np.zeros(n_nodes, dtype=ctypes.c_long) pred_node = self.model.apply(X).astype(ctypes.c_long) _create_node_counters(self.pos, self.neg, pred_node, y.astype(ctypes.c_double)) self.pos = self.pos.astype(ctypes.c_double) + self.beta_prior[0] self.neg = self.neg.astype(ctypes.c_double) + self.beta_prior[1] self.is_fitted = True return self
Example #3
Source File: speech_recognition.py From fine-lm with MIT License | 6 votes |
def hparams(self, defaults, model_hparams): p = model_hparams # Filterbank extraction in bottom instead of preprocess_example is faster. p.add_hparam("audio_preproc_in_bottom", False) # The trainer seems to reserve memory for all members of the input dict p.add_hparam("audio_keep_example_waveforms", False) p.add_hparam("audio_sample_rate", 16000) p.add_hparam("audio_preemphasis", 0.97) p.add_hparam("audio_dither", 1.0 / np.iinfo(np.int16).max) p.add_hparam("audio_frame_length", 25.0) p.add_hparam("audio_frame_step", 10.0) p.add_hparam("audio_lower_edge_hertz", 20.0) p.add_hparam("audio_upper_edge_hertz", 8000.0) p.add_hparam("audio_num_mel_bins", 80) p.add_hparam("audio_add_delta_deltas", True) p.add_hparam("num_zeropad_frames", 250) p = defaults # p.stop_at_eos = int(False) p.input_modality = {"inputs": ("audio:speech_recognition_modality", None)} p.target_modality = (registry.Modalities.SYMBOL, 256)
Example #4
Source File: arraywriters.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def _do_scaling(self): arr = self._array out_dtype = self._out_dtype assert out_dtype.kind in 'iu' mn, mx = self.finite_range() if arr.dtype.kind == 'f': # Float to (u)int scaling self._range_scale() return # (u)int to (u)int info = np.iinfo(out_dtype) out_max, out_min = info.max, info.min # If left as int64, uint64, comparisons will default to floats, and # these are inexact for > 2**53 - so convert to int if (as_int(mx) <= as_int(out_max) and as_int(mn) >= as_int(out_min)): # already in range return # (u)int to (u)int scaling self._iu2iu()
Example #5
Source File: minc.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def _get_valid_range(self): ''' Return valid range for image data The valid range can come from the image 'valid_range' or image 'valid_min' and 'valid_max', or, failing that, from the data type range ''' ddt = self.get_data_dtype() info = np.iinfo(ddt.type) try: valid_range = self._image.valid_range except AttributeError: try: valid_range = [self._image.valid_min, self._image.valid_max] except AttributeError: valid_range = [info.min, info.max] if valid_range[0] < info.min or valid_range[1] > info.max: raise ValueError('Valid range outside input ' 'data type range') return np.asarray(valid_range, dtype=np.float)
Example #6
Source File: test_arraywriters.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def test_int_int_min_max(): # Conversion between (u)int and (u)int eps = np.finfo(np.float64).eps rtol = 1e-6 for in_dt in IUINT_TYPES: iinf = np.iinfo(in_dt) arr = np.array([iinf.min, iinf.max], dtype=in_dt) for out_dt in IUINT_TYPES: try: aw = SlopeInterArrayWriter(arr, out_dt) except ScalingError: continue arr_back_sc = round_trip(aw) # integer allclose adiff = int_abs(arr - arr_back_sc) rdiff = adiff / (arr + eps) assert_true(np.all(rdiff < rtol))
Example #7
Source File: test_arraywriters.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def test_int_int_slope(): # Conversion between (u)int and (u)int for slopes only eps = np.finfo(np.float64).eps rtol = 1e-7 for in_dt in IUINT_TYPES: iinf = np.iinfo(in_dt) for out_dt in IUINT_TYPES: kinds = np.dtype(in_dt).kind + np.dtype(out_dt).kind if kinds in ('ii', 'uu', 'ui'): arrs = (np.array([iinf.min, iinf.max], dtype=in_dt),) elif kinds == 'iu': arrs = (np.array([iinf.min, 0], dtype=in_dt), np.array([0, iinf.max], dtype=in_dt)) for arr in arrs: try: aw = SlopeArrayWriter(arr, out_dt) except ScalingError: continue assert_false(aw.slope == 0) arr_back_sc = round_trip(aw) # integer allclose adiff = int_abs(arr - arr_back_sc) rdiff = adiff / (arr + eps) assert_true(np.all(rdiff < rtol))
Example #8
Source File: test_casting.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def test_able_casting(): # Check the able_int_type function guesses numpy out type types = np.sctypes['int'] + np.sctypes['uint'] for in_type in types: in_info = np.iinfo(in_type) in_mn, in_mx = in_info.min, in_info.max A = np.zeros((1,), dtype=in_type) for out_type in types: out_info = np.iinfo(out_type) out_mn, out_mx = out_info.min, out_info.max B = np.zeros((1,), dtype=out_type) ApBt = (A + B).dtype.type able_type = able_int_type([in_mn, in_mx, out_mn, out_mx]) if able_type is None: assert_equal(ApBt, np.float64) continue # Use str for comparison to avoid int32/64 vs intp comparison # failures assert_equal(np.dtype(ApBt).str, np.dtype(able_type).str)
Example #9
Source File: time_stack.py From radiometric_normalization with Apache License 2.0 | 6 votes |
def _uniform_weight_alpha(sum_masked_arrays, output_datatype): '''Calculates the cumulative mask of a list of masked array Input: sum_masked_arrays (list of numpy masked arrays): The list of masked arrays to find the cumulative mask of, each element represents one band. (sums_masked_array.mask has a 1 for a no data pixel and a 0 otherwise) output_datatype (numpy datatype): The output datatype Output: output_alpha (numpy uint16 array): The output mask (0 for a no data pixel, uint16 max value otherwise) ''' output_alpha = numpy.ones(sum_masked_arrays[0].shape) for band_sum_masked_array in sum_masked_arrays: output_alpha[numpy.nonzero(band_sum_masked_array.mask == 1)] = 0 output_alpha = output_alpha.astype(output_datatype) * \ numpy.iinfo(output_datatype).max return output_alpha
Example #10
Source File: test_index_tricks.py From recruit with Apache License 2.0 | 6 votes |
def test_big_indices(self): # ravel_multi_index for big indices (issue #7546) if np.intp == np.int64: arr = ([1, 29], [3, 5], [3, 117], [19, 2], [2379, 1284], [2, 2], [0, 1]) assert_equal( np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)), [5627771580, 117259570957]) # test overflow checking for too big array (issue #7546) dummy_arr = ([0],[0]) half_max = np.iinfo(np.intp).max // 2 assert_equal( np.ravel_multi_index(dummy_arr, (half_max, 2)), [0]) assert_raises(ValueError, np.ravel_multi_index, dummy_arr, (half_max+1, 2)) assert_equal( np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0]) assert_raises(ValueError, np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
Example #11
Source File: test_core.py From recruit with Apache License 2.0 | 6 votes |
def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 assert_(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf assert_(not allclose(a, b)) b[0] = np.inf assert_(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked assert_(allclose(a, b, masked_equal=True)) assert_(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 assert_(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) assert_(allclose(a, a))
Example #12
Source File: test_random.py From recruit with Apache License 2.0 | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example #13
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def test_can_cast_values(self): # gh-5917 for dt in np.sctypes['int'] + np.sctypes['uint']: ii = np.iinfo(dt) assert_(np.can_cast(ii.min, dt)) assert_(np.can_cast(ii.max, dt)) assert_(not np.can_cast(ii.min - 1, dt)) assert_(not np.can_cast(ii.max + 1, dt)) for dt in np.sctypes['float']: fi = np.finfo(dt) assert_(np.can_cast(fi.min, dt)) assert_(np.can_cast(fi.max, dt)) # Custom exception class to test exception propagation in fromiter
Example #14
Source File: normalize.py From radiometric_normalization with Apache License 2.0 | 6 votes |
def _linear_transformation_to_lut(linear_transformation, max_value=None, dtype=numpy.uint16): min_value = 0 if max_value is None: max_value = numpy.iinfo(dtype).max def gain_offset_to_lut(gain, offset): logging.debug( 'Normalize: Calculating lut values for gain ' '{} and offset {}'.format(gain, offset)) lut = numpy.arange(min_value, max_value + 1, dtype=numpy.float) return gain * lut + offset lut = gain_offset_to_lut(linear_transformation.gain, linear_transformation.offset) logging.debug('Normalize: Clipping lut from [{}, {}] to [{},{}]'.format( min(lut), max(lut), min_value, max_value)) numpy.clip(lut, min_value, max_value, lut) return lut.astype(dtype)
Example #15
Source File: datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def argmin(self, axis=None, skipna=True, *args, **kwargs): """ Returns the indices of the minimum values along an axis. See `numpy.ndarray.argmin` for more information on the `axis` parameter. See Also -------- numpy.ndarray.argmin """ nv.validate_argmin(args, kwargs) nv.validate_minmax_axis(axis) i8 = self.asi8 if self.hasnans: mask = self._isnan if mask.all() or not skipna: return -1 i8 = i8.copy() i8[mask] = np.iinfo('int64').max return i8.argmin()
Example #16
Source File: base_mab.py From mabwiser with Apache License 2.0 | 6 votes |
def _parallel_predict(self, contexts: np.ndarray, is_predict: bool): # Total number of contexts to predict n_contexts = len(contexts) # Partition contexts by job n_jobs, n_contexts, starts = self._partition_contexts(n_contexts) total_contexts = sum(n_contexts) # Get seed value for each context seeds = self.rng.randint(np.iinfo(np.int32).max, size=total_contexts) # Perform parallel predictions predictions = Parallel(n_jobs=n_jobs, backend=self.backend)( delayed(self._predict_contexts)( contexts[starts[i]:starts[i + 1]], is_predict, seeds[starts[i]:starts[i + 1]], starts[i]) for i in range(n_jobs)) # Reduce predictions = list(chain.from_iterable(t for t in predictions)) return predictions if len(predictions) > 1 else predictions[0]
Example #17
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_constructor_overflow_int64(self): # see gh-15832 msg = ("The elements provided in the data cannot " "all be casted to the dtype int64") with pytest.raises(OverflowError, match=msg): Index([np.iinfo(np.uint64).max - 1], dtype="int64")
Example #18
Source File: test_getlimits.py From recruit with Apache License 2.0 | 5 votes |
def test_basic(self): dts = list(zip(['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'], [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])) for dt1, dt2 in dts: for attr in ('bits', 'min', 'max'): assert_equal(getattr(iinfo(dt1), attr), getattr(iinfo(dt2), attr), attr) assert_raises(ValueError, iinfo, 'f4')
Example #19
Source File: test_dtype.py From recruit with Apache License 2.0 | 5 votes |
def test_shape_invalid(self): # Check that the shape is valid. max_int = np.iinfo(np.intc).max max_intp = np.iinfo(np.intp).max # Too large values (the datatype is part of this) assert_raises(ValueError, np.dtype, [('a', 'f4', max_int // 4 + 1)]) assert_raises(ValueError, np.dtype, [('a', 'f4', max_int + 1)]) assert_raises(ValueError, np.dtype, [('a', 'f4', (max_int, 2))]) # Takes a different code path (fails earlier: assert_raises(ValueError, np.dtype, [('a', 'f4', max_intp + 1)]) # Negative values assert_raises(ValueError, np.dtype, [('a', 'f4', -1)]) assert_raises(ValueError, np.dtype, [('a', 'f4', (-1, -1))])
Example #20
Source File: test_numeric.py From recruit with Apache License 2.0 | 5 votes |
def test_min_int(self): # Could make problems because of abs(min_int) == min_int min_int = np.iinfo(np.int_).min a = np.array([min_int], dtype=np.int_) assert_(np.allclose(a, a))
Example #21
Source File: test_timedelta.py From recruit with Apache License 2.0 | 5 votes |
def test_implementation_limits(self): min_td = Timedelta(Timedelta.min) max_td = Timedelta(Timedelta.max) # GH 12727 # timedelta limits correspond to int64 boundaries assert min_td.value == np.iinfo(np.int64).min + 1 assert max_td.value == np.iinfo(np.int64).max # Beyond lower limit, a NAT before the Overflow assert (min_td - Timedelta(1, 'ns')) is NaT with pytest.raises(OverflowError): min_td - Timedelta(2, 'ns') with pytest.raises(OverflowError): max_td + Timedelta(1, 'ns') # Same tests using the internal nanosecond values td = Timedelta(min_td.value - 1, 'ns') assert td is NaT with pytest.raises(OverflowError): Timedelta(min_td.value - 2, 'ns') with pytest.raises(OverflowError): Timedelta(max_td.value + 1, 'ns')
Example #22
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_min_int(self): a = np.array([np.iinfo(np.int_).min], dtype=np.int_) # Should not raise: assert_allclose(a, a)
Example #23
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_poisson_exceptions(self): lambig = np.iinfo('l').max lamneg = -1 assert_raises(ValueError, np.random.poisson, lamneg) assert_raises(ValueError, np.random.poisson, [lamneg]*10) assert_raises(ValueError, np.random.poisson, lambig) assert_raises(ValueError, np.random.poisson, [lambig]*10)
Example #24
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_random_integers_deprecated(self): with warnings.catch_warnings(): warnings.simplefilter("error", DeprecationWarning) # DeprecationWarning raised with high == None assert_raises(DeprecationWarning, np.random.random_integers, np.iinfo('l').max) # DeprecationWarning raised with high != None assert_raises(DeprecationWarning, np.random.random_integers, np.iinfo('l').max, np.iinfo('l').max)
Example #25
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_random_integers_max_int(self): # Tests whether random_integers can generate the # maximum allowed Python int that can be converted # into a C long. Previous implementations of this # method have thrown an OverflowError when attempting # to generate this integer. with suppress_warnings() as sup: w = sup.record(DeprecationWarning) actual = np.random.random_integers(np.iinfo('l').max, np.iinfo('l').max) assert_(len(w) == 1) desired = np.iinfo('l').max assert_equal(actual, desired)
Example #26
Source File: speech_recognition.py From fine-lm with MIT License | 5 votes |
def encode(self, s): """Transform a string with a filename into a list of float32. Args: s: path to the file with a waveform. Returns: samples: list of int16s """ # Make sure that the data is a single channel, 16bit, 16kHz wave. # TODO(chorowski): the directory may not be writable, this should fallback # to a temp path, and provide instructions for installing sox. if s.endswith(".mp3"): # TODO(dliebling) On Linux, check if libsox-fmt-mp3 is installed. out_filepath = s[:-4] + ".wav" call([ "sox", "--guard", s, "-r", "16k", "-b", "16", "-c", "1", out_filepath ]) s = out_filepath elif not s.endswith(".wav"): out_filepath = s + ".wav" if not os.path.exists(out_filepath): call(["sox", "-r", "16k", "-b", "16", "-c", "1", s, out_filepath]) s = out_filepath rate, data = wavfile.read(s) assert rate == self._sample_rate assert len(data.shape) == 1 if data.dtype not in [np.float32, np.float64]: data = data.astype(np.float32) / np.iinfo(data.dtype).max return data.tolist()
Example #27
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_full_range(self): # Test for ticket #1690 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 try: self.rfunc(lbnd, ubnd, dtype=dt) except Exception as e: raise AssertionError("No error should have been raised, " "but one was with the following " "message:\n\n%s" % str(e))
Example #28
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_rng_zero_and_extremes(self): for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 tgt = ubnd - 1 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) tgt = lbnd assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) tgt = (lbnd + ubnd)//2 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
Example #29
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_bounds_checking(self): for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt) assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt) assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt) assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
Example #30
Source File: test_getlimits.py From recruit with Apache License 2.0 | 5 votes |
def test_instances(): iinfo(10) finfo(3.0)