Python numpy.dtype() Examples
The following are 30
code examples of numpy.dtype().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def asnumpy(self): """Returns a ``numpy.ndarray`` object with value copied from this array. Examples -------- >>> x = mx.nd.ones((2,3)) >>> y = x.asnumpy() >>> type(y) <type 'numpy.ndarray'> >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) >>> z = mx.nd.ones((2,3), dtype='int32') >>> z.asnumpy() array([[1, 1, 1], [1, 1, 1]], dtype=int32) """ data = np.empty(self.shape, dtype=self.dtype) check_call(_LIB.MXNDArraySyncCopyToCPU( self.handle, data.ctypes.data_as(ctypes.c_void_p), ctypes.c_size_t(data.size))) return data
Example #2
Source File: json_serializers.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def serialize_ndarray_b64(o): """ Serializes a :obj:`numpy.ndarray` in a format where the datatype and shape are human-readable, but the array data itself is binary64 encoded. Args: o (:obj:`numpy.ndarray`): :obj:`ndarray` to be serialized. Returns: A dictionary that can be passed to :obj:`json.dumps`. """ if o.flags['C_CONTIGUOUS']: o_data = o.data else: o_data = np.ascontiguousarray(o).data data_b64 = base64.b64encode(o_data) return dict( _type='np.ndarray', data=data_b64.decode('utf-8'), dtype=o.dtype, shape=o.shape)
Example #3
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def asscipy(self): """Returns a ``scipy.sparse.csr.csr_matrix`` object with value copied from this array Examples -------- >>> x = mx.nd.sparse.zeros('csr', (2,3)) >>> y = x.asscipy() >>> type(y) <type 'scipy.sparse.csr.csr_matrix'> >>> y <2x3 sparse matrix of type '<type 'numpy.float32'>' with 0 stored elements in Compressed Sparse Row format> """ data = self.data.asnumpy() indices = self.indices.asnumpy() indptr = self.indptr.asnumpy() if not spsp: raise ImportError("scipy is not available. \ Please check if the scipy python bindings are installed.") return spsp.csr_matrix((data, indices, indptr), shape=self.shape, dtype=self.dtype) # pylint: disable=abstract-method
Example #4
Source File: attacks_tfe.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, model, dtypestr='float32'): """ :param model: An instance of the cleverhans.model.Model class. :param back: The backend to use. Inherited from AttackBase class. :param dtypestr: datatype of the input data samples and crafted adversarial attacks. """ # Validate the input arguments. if dtypestr != 'float32' and dtypestr != 'float64': raise ValueError("Unexpected input for argument dtypestr.") import tensorflow as tf tfe = tf.contrib.eager self.tf_dtype = tf.as_dtype(dtypestr) self.np_dtype = np.dtype(dtypestr) if not isinstance(model, Model): raise ValueError("The model argument should be an instance of" " the cleverhans.model.Model class.") # Prepare attributes self.model = model self.dtypestr = dtypestr
Example #5
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): """Return a new handle with specified shape and context. Empty handle is only used to hold results. Returns ------- handle A new empty `NDArray` handle. """ hdl = NDArrayHandle() check_call(_LIB.MXNDArrayCreateEx( c_array_buf(mx_uint, native_array('I', shape)), mx_uint(len(shape)), ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), ctypes.c_int(int(delay_alloc)), ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])), ctypes.byref(hdl))) return hdl
Example #6
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def _prepare_value_nd(self, value, vshape): """Given value and vshape, create an `NDArray` from value with the same context and dtype as the current one and broadcast it to vshape.""" if isinstance(value, numeric_types): value_nd = full(shape=vshape, val=value, ctx=self.context, dtype=self.dtype) elif isinstance(value, NDArray): value_nd = value.as_in_context(self.context) if value_nd.dtype != self.dtype: value_nd = value_nd.astype(self.dtype) else: try: value_nd = array(value, ctx=self.context, dtype=self.dtype) except: raise TypeError('NDArray does not support assignment with non-array-like' ' object %s of type %s' % (str(value), str(type(value)))) if value_nd.shape != vshape: value_nd = value_nd.broadcast_to(vshape) return value_nd
Example #7
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def astype(self, dtype, copy=True): """Returns a copy of the array after casting to a specified type. Parameters ---------- dtype : numpy.dtype or str The type of the returned array. copy : bool Default `True`. By default, astype always returns a newly allocated ndarray on the same context. If this is set to `False`, and the dtype requested is the same as the ndarray's dtype, the ndarray is returned instead of a copy. Examples -------- >>> x = mx.nd.sparse.zeros('row_sparse', (2,3), dtype='float32') >>> y = x.astype('int32') >>> y.dtype <type 'numpy.int32'> """ if not copy and np.dtype(dtype) == self.dtype: return self res = zeros(shape=self.shape, ctx=self.context, dtype=dtype, stype=self.stype) self.copyto(res) return res
Example #8
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def dtype(self): """Data-type of the array's elements. Returns ------- numpy.dtype This NDArray's data type. Examples -------- >>> x = mx.nd.zeros((2,3)) >>> x.dtype <type 'numpy.float32'> >>> y = mx.nd.zeros((2,3), dtype='int32') >>> y.dtype <type 'numpy.int32'> """ mx_dtype = ctypes.c_int() check_call(_LIB.MXNDArrayGetDType( self.handle, ctypes.byref(mx_dtype))) return _DTYPE_MX_TO_NP[mx_dtype.value]
Example #9
Source File: json_serializers.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def deserialize_ndarray(d): """ Deserializes a JSONified :obj:`numpy.ndarray`. Can handle arrays serialized using any of the methods in this module: :obj:`"npy"`, :obj:`"b64"`, :obj:`"readable"`. Args: d (`dict`): A dictionary representation of an :obj:`ndarray` object. Returns: An :obj:`ndarray` object. """ if 'data' in d: x = np.fromstring( base64.b64decode(d['data']), dtype=d['dtype']) x.shape = d['shape'] return x elif 'value' in d: return np.array(d['value'], dtype=d['dtype']) elif 'npy' in d: return deserialize_ndarray_npy(d) else: raise ValueError('Malformed np.ndarray encoding.')
Example #10
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def T(self): """Returns a copy of the array with axes transposed. Equivalent to ``mx.nd.transpose(self)`` except that self is returned if ``self.ndim < 2``. Unlike ``numpy.ndarray.T``, this function returns a copy rather than a view of the array unless ``self.ndim < 2``. Examples -------- >>> x = mx.nd.arange(0,6).reshape((2,3)) >>> x.asnumpy() array([[ 0., 1., 2.], [ 3., 4., 5.]], dtype=float32) >>> x.T.asnumpy() array([[ 0., 3.], [ 1., 4.], [ 2., 5.]], dtype=float32) """ if len(self.shape) < 2: return self return op.transpose(self) # pylint: enable= invalid-name, undefined-variable
Example #11
Source File: json_serializers.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def deserialize_dtype(d): """ Deserializes a JSONified :obj:`numpy.dtype`. Args: d (:obj:`dict`): A dictionary representation of a :obj:`dtype` object. Returns: A :obj:`dtype` object. """ if isinstance(d['descr'], six.string_types): return np.dtype(d['descr']) descr = [] for col in d['descr']: col_descr = [] for c in col: if isinstance(c, six.string_types): col_descr.append(str(c)) elif type(c) is list: col_descr.append(tuple(c)) else: col_descr.append(c) descr.append(tuple(col_descr)) return np.dtype(descr)
Example #12
Source File: json_serializers.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def serialize_dtype(o): """ Serializes a :obj:`numpy.dtype`. Args: o (:obj:`numpy.dtype`): :obj:`dtype` to be serialized. Returns: A dictionary that can be passed to :obj:`json.dumps`. """ if len(o) == 0: return dict( _type='np.dtype', descr=str(o)) return dict( _type='np.dtype', descr=o.descr) # res = [] # for k in range(len(o)): # res.append((o.names[k], str(o[k]))) # return dict( # _type='np.dtype', # desc=res)
Example #13
Source File: dataset.py From disentangling_conditional_gans with MIT License | 6 votes |
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'): self.resolution = resolution self.resolution_log2 = int(np.log2(resolution)) self.shape = [num_channels, resolution, resolution] self.dtype = dtype self.dynamic_range = dynamic_range self.label_size = label_size self.label_dtype = label_dtype self._tf_minibatch_var = None self._tf_lod_var = None self._tf_minibatch_np = None self._tf_labels_np = None assert self.resolution == 2 ** self.resolution_log2 with tf.name_scope('Dataset'): self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var') self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var')
Example #14
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def asscalar(self): """Returns a scalar whose value is copied from this array. This function is equivalent to ``self.asnumpy()[0]``. This NDArray must have shape (1,). Examples -------- >>> x = mx.nd.ones((1,), dtype='int32') >>> x.asscalar() 1 >>> type(x.asscalar()) <type 'numpy.int32'> """ if self.shape != (1,): raise ValueError("The current array is not a scalar") return self.asnumpy()[0]
Example #15
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def copy(self): """Makes a copy of this ``NDArray``, keeping the same context. Returns ------- NDArray, CSRNDArray or RowSparseNDArray The copied array Examples -------- >>> x = mx.nd.ones((2,3)) >>> y = x.copy() >>> y.asnumpy() array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) """ return self.copyto(self.context)
Example #16
Source File: kimotion.py From BiblioPixelAnimations with MIT License | 6 votes |
def __init__(self, server): super().__init__() self.setDaemon(True) self._stop = threading.Event() self._reading = thread_lock() self.dt = np.dtype(np.uint16) self.dt = self.dt.newbyteorder('<') self._data = [np.zeros(WS_FRAME_SIZE, self.dt), np.zeros(WS_FRAME_SIZE, self.dt)] self._buf = False self.ws = create_connection("ws://{}/".format(server))
Example #17
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def image_reslice(image, spec, method=None, fill=0, dtype=None, weights=None, image_type=None): ''' image_reslice(image, spec) yields a duplicate of the given image resliced to have the voxels indicated by the given image spec. Note that spec may be an image itself. Optional arguments that can be passed to image_interpolate() (asside from affine) are allowed here and are passed through. ''' if image_type is None and is_image(image): image_type = to_image_type(image) spec = to_image_spec(spec) image = to_image(image) # we make a big mesh and interpolate at these points... imsh = spec['image_shape'] (args, kw) = ([np.arange(n) for n in imsh[:3]], {'indexing': 'ij'}) ijk = np.asarray([u.flatten() for u in np.meshgrid(*args, **kw)]) ijk = np.dot(spec['affine'], np.vstack([ijk, np.ones([1,ijk.shape[1]])]))[:3] # interpolate here... u = image_interpolate(image, ijk, method=method, fill=fill, dtype=dtype, weights=weights) return to_image((np.reshape(u, imsh), spec), image_type=image_type)
Example #18
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def finto(x, ii, n, null=0): ''' finto(x,ii,n) yields a vector u of length n such that u[ii] = x. Notes: * The ii index may be a tuple (as can be passed to numpy arrays' getitem method) in order to specify that the specific elements of a multidimensional output be set. In this case, the argument n should be a tuple of sizes (a single integer is taken to be a square/cube/etc). * x may be a sparse-array, but in it will be reified by this function. The following optional arguments are allowed: * null (defaut: 0) specifies the value that should appear in the elements of u that are not set. ''' x = x.toarray() if sps.issparse(x) else np.asarray(x) shx = x.shape if isinstance(ii, tuple): if not pimms.is_vector(n): n = tuple([n for _ in ii]) if len(n) != len(ii): raise ValueError('%d-dim index but %d-dim output' % (len(ii),len(n))) sh = n + shx[1:] elif pimms.is_int(ii): sh = (n,) + shx else: sh = (n,) + shx[1:] u = np.zeros(sh, dtype=x.dtype) if null == 0 else np.full(sh, null, dtype=x.dtype) u[ii] = x return u # Potential Functions ##############################################################################
Example #19
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _at(self, idx): """Returns a view of the array sliced at `idx` in the first dim. This is called through ``x[idx]``. Parameters ---------- idx : int index for slicing the `NDArray` in the first dim. Returns ------- NDArray `NDArray` sharing the memory with the current one sliced at `idx` in the first dim. Examples -------- >>> a = mx.nd.array([[1,2], [3, 4]]) >>> a[1].asnumpy() array([ 3., 4.], dtype=float32) >>> b = mx.nd.array([1, 2, 3, 4]) >>> b[0].asnumpy() array([ 1.], dtype=float32) """ handle = NDArrayHandle() if idx < 0: length = self.shape[0] idx += length if idx < 0: raise IndexError('index %d is out of bounds for axis 0 with size %d' % (idx-length, length)) check_call(_LIB.MXNDArrayAt( self.handle, mx_uint(idx), ctypes.byref(handle))) return NDArray(handle=handle, writable=self.writable)
Example #20
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def ones(shape, ctx=None, dtype=None, **kwargs): """Returns a new array filled with all ones, with the given shape and type. Parameters ---------- shape : int or tuple of int or list of int The shape of the empty array. ctx : Context, optional An optional device context. Defaults to the current default context (``mxnet.context.current_context()``). dtype : str or numpy.dtype, optional An optional value type (default is `float32`). out : NDArray, optional The output NDArray (default is `None`). Returns ------- NDArray A new array of the specified shape filled with all ones. Examples -------- >>> mx.nd.ones(1).asnumpy() array([ 1.], dtype=float32) >>> mx.nd.ones((1,2), mx.gpu(0)) <NDArray 1x2 @gpu(0)> >>> mx.nd.ones((1,2), dtype='float16').asnumpy() array([[ 1., 1.]], dtype=float16) """ # pylint: disable= unused-argument if ctx is None: ctx = current_context() dtype = mx_real_t if dtype is None else dtype # pylint: disable= no-member, protected-access return _internal._ones(shape=shape, ctx=ctx, dtype=dtype, **kwargs) # pylint: enable= no-member, protected-access
Example #21
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _prepare_src_array(source_array, dtype): """Prepare `source_array` so that it can be used to construct NDArray. `source_array` is converted to a `np.ndarray` if it's neither an `NDArray` \ nor an `np.ndarray`. """ if not isinstance(source_array, NDArray) and not isinstance(source_array, np.ndarray): try: source_array = np.array(source_array, dtype=dtype) except: raise TypeError('values must be array like object') return source_array
Example #22
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def broadcast_like(self, other): """Broadcasts the input array to the shape of other. Broadcasting is only allowed on axes with size 1. The new shape cannot change the number of dimensions. For example, you could broadcast from shape (2, 1) to (2, 3), but not from shape (2, 3) to (2, 3, 3). Parameters ---------- other : NDArray Array with shape of the desired array. Returns ------- NDArray A NDArray with the desired shape that is not sharing data with this array, even if the new shape is the same as ``self.shape``. Examples -------- >>> x = mx.nd.arange(0,3).reshape((1,3,1)) >>> x.asnumpy() array([[[ 0.], [ 1.], [ 2.]]], dtype=float32) >>> y = x.broadcast_like(mx.nd.ones((2,3,3))) >>> y.asnumpy() array([[[ 0., 0., 0.], [ 1., 1., 1.], [ 2., 2., 2.]], <BLANKLINE> [[ 0., 0., 0.], [ 1., 1., 1.], [ 2., 2., 2.]]], dtype=float32) """ return self.broadcast_to(other.shape)
Example #23
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _slice(self, start, stop): """Returns a sliced NDArray that shares memory with the current one. This is called through ``x[start:stop]``. Parameters ---------- start : int Starting inclusive index of slice in the first dim. stop : int Finishing exclusive index of slice in the first dim. Returns ------- `NDArray` sharing the memory with the current one sliced from start to stop in the first dim. Examples: >>> a = mx.nd.array([[1,2], [3, 4], [5, 6], [7, 8]]) >>> a[1:2].asnumpy() array([[ 3., 4.]], dtype=float32) >>> a[1:1].asnumpy() array([], shape=(0, 2), dtype=float32) """ handle = NDArrayHandle() start, stop, _ = _get_index_range(start, stop, self.shape[0]) check_call(_LIB.MXNDArraySlice( self.handle, mx_uint(start), mx_uint(stop), ctypes.byref(handle))) return NDArray(handle=handle, writable=self.writable)
Example #24
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def __getitem__(self, key): """x.__getitem__(i) <=> x[i] Returns a sliced view of this array. Parameters ---------- key : slice Indexing key. Examples -------- >>> x = mx.nd.sparse.zeros('row_sparse', (2, 3)) >>> x[:].asnumpy() array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) """ if isinstance(key, int): raise Exception("__getitem__ with int key is not implemented for RowSparseNDArray yet") if isinstance(key, py_slice): if key.step is not None or key.start is not None or key.stop is not None: raise Exception('RowSparseNDArray only supports [:] for __getitem__') else: return self if isinstance(key, tuple): raise ValueError('Multi-dimension indexing is not supported') raise ValueError('Undefined behaviour for {}'.format(key))
Example #25
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def copyto(self, other): """Copies the value of this array to another array. Parameters ---------- other : NDArray or CSRNDArray or RowSparseNDArray or Context The destination array or context. Returns ------- NDArray or CSRNDArray or RowSparseNDArray The copied array. """ # pylint: disable= no-member, protected-access if isinstance(other, NDArray): if other.handle is self.handle: warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) return False return _internal._copyto(self, out=other) elif isinstance(other, Context): hret = _ndarray_cls(_new_alloc_handle(self.stype, self.shape, other, True, self.dtype, self._aux_types)) return _internal._copyto(self, out=hret) else: raise TypeError('copyto does not support type ' + str(type(other))) # pylint: enable= no-member, protected-access
Example #26
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _aux_type(self, i): """Data-type of the array's ith aux data. Returns ------- numpy.dtype This BaseSparseNDArray's aux data type. """ aux_type = ctypes.c_int() check_call(_LIB.MXNDArrayGetAuxType(self.handle, i, ctypes.byref(aux_type))) return _DTYPE_MX_TO_NP[aux_type.value]
Example #27
Source File: sparse.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _new_alloc_handle(stype, shape, ctx, delay_alloc, dtype, aux_types, aux_shapes=None): """Return a new handle with specified storage type, shape, dtype and context. Empty handle is only used to hold results Returns ------- handle A new empty ndarray handle """ hdl = NDArrayHandle() for aux_t in aux_types: if np.dtype(aux_t) != np.dtype("int64"): raise NotImplementedError("only int64 is supported for aux types") aux_type_ids = [int(_DTYPE_NP_TO_MX[np.dtype(aux_t).type]) for aux_t in aux_types] aux_shapes = [(0,) for aux_t in aux_types] if aux_shapes is None else aux_shapes aux_shape_lens = [len(aux_shape) for aux_shape in aux_shapes] aux_shapes = py_sum(aux_shapes, ()) num_aux = mx_uint(len(aux_types)) check_call(_LIB.MXNDArrayCreateSparseEx( ctypes.c_int(int(_STORAGE_TYPE_STR_TO_ID[stype])), c_array_buf(mx_uint, native_array('I', shape)), mx_uint(len(shape)), ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), ctypes.c_int(int(delay_alloc)), ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])), num_aux, c_array_buf(ctypes.c_int, native_array('i', aux_type_ids)), c_array_buf(mx_uint, native_array('I', aux_shape_lens)), c_array_buf(mx_uint, native_array('I', aux_shapes)), ctypes.byref(hdl))) return hdl
Example #28
Source File: ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _sync_copyfrom(self, source_array): """Performs a synchronized copy from the `source_array` to the current array. This is called through ``x[:] = source_array``, where the `source_array` is a `numpy.ndarray` or array-like object. This function blocks until all the pending read/write operations with respect to the current `NDArray` are finished and carry out the copy operation to the current NDArray. Parameters ---------- source_array : array_like The data source we would like to copy from. Example ------- >>> a = mx.nd.array([1, 2]) >>> a.asnumpy() array([ 1., 2.], dtype=float32) >>> a[:] = np.array([3, 4]) >> a.asnumpy() array([ 3., 4.], dtype=float32) """ if not isinstance(source_array, np.ndarray): try: source_array = np.array(source_array, dtype=self.dtype) except: raise TypeError('array must consist of array-like data,' + 'type %s is not supported' % str(type(array))) source_array = np.asarray(source_array, dtype=self.dtype, order='C') if source_array.shape != self.shape: raise ValueError('Shape inconsistent: expected %s vs got %s'%( str(source_array.shape), str(self.shape))) check_call(_LIB.MXNDArraySyncCopyFromCPU( self.handle, source_array.ctypes.data_as(ctypes.c_void_p), ctypes.c_size_t(source_array.size)))
Example #29
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def image_spec_to_image(imspec, image_type=None, fill=0): ''' image_spec_to_image(imspec) yields an empty with the given image-spec. image_spec_to_image(imspec, image_type) creates an image with the given type image_spec_to_image(imspec, image_type, fill) fills the resulting image with the given fill-value. ''' imsh = imspec_lookup(imspec, 'image_shape') if fill == 0: imarr = np.zeros(imsh, dtype=imspec_lookup(imspec, 'voxel_type')) else: imarr = np.full(imsh, fill, dtype=imspec_lookup(imspec, 'voxel_type')) # okay, we have the image array... image_type = to_image_type('nifti1' if image_type is None else image_type) return image_type.create(imarr, meta_data=imspec)
Example #30
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def parse_type(self, hdat, dataobj=None): dtype = super(MGHImageType, self).parse_type(hdat, dataobj=dataobj) if np.issubdtype(dtype, np.floating): dtype = np.float32 elif np.issubdtype(dtype, np.int8): dtype = np.int8 elif np.issubdtype(dtype, np.int16): dtype = np.int16 elif np.issubdtype(dtype, np.integer): dtype = np.int32 else: raise ValueError('Could not deduce appropriate MGH type for dtype %s' % dtype) return dtype