Python six.MAXSIZE Examples
The following are 30
code examples of six.MAXSIZE().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
six
, or try the search function
.
Example #1
Source File: short_sentence_similarity.py From Semantic-Texual-Similarity-Toolkits with MIT License | 6 votes |
def length_dist(synset_1, synset_2): """ Return a measure of the length of the shortest path in the semantic ontology (Wordnet in our case as well as the paper's) between two synsets. """ l_dist = six.MAXSIZE if synset_1 is None or synset_2 is None: return 0.0 if synset_1 == synset_2: # if synset_1 and synset_2 are the same synset return 0 l_dist = 0.0 else: wset_1 = set([str(x.name()) for x in synset_1.lemmas()]) wset_2 = set([str(x.name()) for x in synset_2.lemmas()]) if len(wset_1.intersection(wset_2)) > 0: # if synset_1 != synset_2 but there is word overlap, return 1.0 l_dist = 1.0 else: # just compute the shortest path between the two l_dist = synset_1.shortest_path_distance(synset_2) if l_dist is None: l_dist = 0.0 # normalize path length to the range [0,1] return math.exp(-ALPHA * l_dist)
Example #2
Source File: elements.py From ChemDataExtractor with MIT License | 6 votes |
def scan(self, tokens, max_matches=six.MAXSIZE, overlap=False): """""" if not self.streamlined: self.streamline() matches = 0 i = 0 length = len(tokens) while i < length and matches < max_matches: try: results, next_i = self.parse(tokens, i) except ParseException as err: i += 1 else: if next_i > i: matches += 1 if len(results) == 1: results = results[0] yield results, i, next_i if overlap: i += 1 else: i = next_i else: i += 1
Example #3
Source File: train.py From mead-baseline with Apache License 2.0 | 6 votes |
def __init__(self, model, **kwargs): super().__init__() if type(model) is dict: model = create_model_for('tagger', **model) self.grad_accum = int(kwargs.get('grad_accum', 1)) self.gpus = int(kwargs.get('gpus', 1)) # By default support IOB1/IOB2 self.span_type = kwargs.get('span_type', 'iob') self.verbose = kwargs.get('verbose', False) logger.info('Setting span type %s', self.span_type) self.model = model self.idx2label = revlut(self.model.labels) self.clip = float(kwargs.get('clip', 5)) self.optimizer = OptimizerManager(self.model, **kwargs) if self.gpus > 1: logger.info("Trainer for PyTorch tagger currently doesnt support multiple GPUs. Setting to 1") self.gpus = 1 if self.gpus > 0 and self.model.gpu: self.model = model.cuda() else: logger.warning("Requested training on CPU. This will be slow.") self.nsteps = kwargs.get('nsteps', six.MAXSIZE)
Example #4
Source File: test_six.py From c4ddev with MIT License | 5 votes |
def test_MAXSIZE(): try: # This shouldn't raise an overflow error. six.MAXSIZE.__index__() except AttributeError: # Before Python 2.6. pass py.test.raises( (ValueError, OverflowError), operator.mul, [None], six.MAXSIZE + 1)
Example #5
Source File: imageutil.py From Gooey with MIT License | 5 votes |
def resizeImage(im, targetHeight): im.thumbnail((six.MAXSIZE, targetHeight)) return im
Example #6
Source File: short_sentence_similarity.py From Semantic-Texual-Similarity-Toolkits with MIT License | 5 votes |
def hierarchy_dist(synset_1, synset_2): """ Return a measure of depth in the ontology to model the fact that nodes closer to the root are broader and have less semantic similarity than nodes further away from the root. """ h_dist = six.MAXSIZE if synset_1 is None or synset_2 is None: return h_dist if synset_1 == synset_2: # return the depth of one of synset_1 or synset_2 h_dist = max([x[1] for x in synset_1.hypernym_distances()]) else: # find the max depth of least common subsumer hypernyms_1 = {x[0]:x[1] for x in synset_1.hypernym_distances()} hypernyms_2 = {x[0]:x[1] for x in synset_2.hypernym_distances()} lcs_candidates = set(hypernyms_1.keys()).intersection( set(hypernyms_2.keys())) if len(lcs_candidates) > 0: lcs_dists = [] for lcs_candidate in lcs_candidates: lcs_d1 = 0 if lcs_candidate in hypernyms_1 : lcs_d1 = hypernyms_1[lcs_candidate] lcs_d2 = 0 if lcs_candidate in hypernyms_2: lcs_d2 = hypernyms_2[lcs_candidate] lcs_dists.append(max([lcs_d1, lcs_d2])) h_dist = max(lcs_dists) else: h_dist = 0 return ((math.exp(BETA * h_dist) - math.exp(-BETA * h_dist)) / (math.exp(BETA * h_dist) + math.exp(-BETA * h_dist)))
Example #7
Source File: test_six.py From six with MIT License | 5 votes |
def test_integer_types(): assert isinstance(1, six.integer_types) assert isinstance(-1, six.integer_types) assert isinstance(six.MAXSIZE + 23, six.integer_types) assert not isinstance(.1, six.integer_types)
Example #8
Source File: test_six.py From six with MIT License | 5 votes |
def test_MAXSIZE(): try: # This shouldn't raise an overflow error. six.MAXSIZE.__index__() except AttributeError: # Before Python 2.6. pass pytest.raises( (ValueError, OverflowError), operator.mul, [None], six.MAXSIZE + 1)
Example #9
Source File: test_int2str.py From geohash-hilbert with MIT License | 5 votes |
def test_randoms(bpc): prev_code = None for _i in range(100): i = randint(0, six.MAXSIZE) code = encode_int(i, bpc) assert isinstance(code, six.text_type) assert code != i assert i == decode_int(code, bpc) if prev_code is not None: assert code != prev_code prev_code = code
Example #10
Source File: plugin.py From pytest-cloud with MIT License | 5 votes |
def get_node_specs(node, host, caps, python=None, chdir=None, mem_per_process=None, max_processes=None): """Get single node specs. Executed on the master node side. :param node: node name in form <username>@<hostname> :type node: str :param host: hostname of the node :type host: str :param python: python executable name to use on the remote side :type python: str :param chdir: relative path where to run (and sync) tests on the remote side :type chdir: str :param mem_per_process: optional amount of memory per process needed, in megabytest :type mem_per_process: int :param max_processes: optional maximum number of processes per test node :type max_processes: int :return: `list` of test gateway specs for single test node in form ['1*ssh=<node>//id=<hostname>_<index>', ...] :rtype: list """ count = min(max_processes or six.MAXSIZE, caps['cpu_count']) if mem_per_process: count = min(int(math.floor(caps['virtual_memory']['available'] / mem_per_process)), count) for index in range(count): fmt = 'ssh={node}//id={host}_{index}//chdir={chdir}//python={python}' yield fmt.format( count=count, node=node, host=host, index=index, chdir=chdir, python=python)
Example #11
Source File: test_six.py From c4ddev with MIT License | 5 votes |
def test_integer_types(): assert isinstance(1, six.integer_types) assert isinstance(-1, six.integer_types) assert isinstance(six.MAXSIZE + 23, six.integer_types) assert not isinstance(.1, six.integer_types)
Example #12
Source File: test_rpc.py From ryu with Apache License 2.0 | 5 votes |
def test_0_call_int2(self): c = rpc.Client(self._client_sock) obj = six.MAXSIZE assert isinstance(obj, int) result = c.call(b'resp', [obj]) assert result == obj assert isinstance(result, type(obj))
Example #13
Source File: module_explorer.py From cloud-debug-python with Apache License 2.0 | 5 votes |
def GetCodeObjectAtLine(module, line): """Searches for a code object at the specified line in the specified module. Args: module: module to explore. line: 1-based line number of the statement. Returns: (True, Code object) on success or (False, (prev_line, next_line)) on failure, where prev_line and next_line are the closest lines with code above and below the specified line, or None if they do not exist. """ if not hasattr(module, '__file__'): return (False, (None, None)) prev_line = 0 next_line = six.MAXSIZE for code_object in _GetModuleCodeObjects(module): for co_line_number in _GetLineNumbers(code_object): if co_line_number == line: return (True, code_object) elif co_line_number < line: prev_line = max(prev_line, co_line_number) elif co_line_number > line: next_line = min(next_line, co_line_number) break prev_line = None if prev_line == 0 else prev_line next_line = None if next_line == six.MAXSIZE else next_line return (False, (prev_line, next_line))
Example #14
Source File: test_six.py From data with GNU General Public License v3.0 | 5 votes |
def test_integer_types(): assert isinstance(1, six.integer_types) assert isinstance(-1, six.integer_types) assert isinstance(six.MAXSIZE + 23, six.integer_types) assert not isinstance(.1, six.integer_types)
Example #15
Source File: test_six.py From data with GNU General Public License v3.0 | 5 votes |
def test_MAXSIZE(): try: # This shouldn't raise an overflow error. six.MAXSIZE.__index__() except AttributeError: # Before Python 2.6. pass py.test.raises( (ValueError, OverflowError), operator.mul, [None], six.MAXSIZE + 1)
Example #16
Source File: test_six.py From data with GNU General Public License v3.0 | 5 votes |
def test_integer_types(): assert isinstance(1, six.integer_types) assert isinstance(-1, six.integer_types) assert isinstance(six.MAXSIZE + 23, six.integer_types) assert not isinstance(.1, six.integer_types)
Example #17
Source File: test_six.py From data with GNU General Public License v3.0 | 5 votes |
def test_MAXSIZE(): try: # This shouldn't raise an overflow error. six.MAXSIZE.__index__() except AttributeError: # Before Python 2.6. pass py.test.raises( (ValueError, OverflowError), operator.mul, [None], six.MAXSIZE + 1)
Example #18
Source File: test_rpc.py From ryu with Apache License 2.0 | 5 votes |
def test_0_call_int3(self): c = rpc.Client(self._client_sock) obj = - six.MAXSIZE - 1 assert isinstance(obj, int) result = c.call(b'resp', [obj]) assert result == obj assert isinstance(result, type(obj))
Example #19
Source File: test_decay.py From mead-baseline with Apache License 2.0 | 5 votes |
def test_composite_calls_rest(): warmup_steps = np.random.randint(50, 101) warm = MagicMock() warm.warmup_steps = warmup_steps rest = MagicMock() lr = CompositeLRScheduler(warm=warm, rest=rest) step = np.random.randint(warmup_steps + 1, six.MAXSIZE) _ = lr(step) warm.assert_not_called() rest.assert_called_once_with(step - warmup_steps)
Example #20
Source File: eager.py From mead-baseline with Apache License 2.0 | 5 votes |
def __init__(self, model_params, **kwargs): """Create a Trainer, and give it the parameters needed to instantiate the model :param model_params: The model parameters :param kwargs: See below :Keyword Arguments: * *nsteps* (`int`) -- If we should report every n-steps, this should be passed * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e * *clip* (`int`) -- If we are doing gradient clipping, what value to use * *optim* (`str`) -- The name of the optimizer we are using * *lr* (`float`) -- The learning rate we are using * *mom* (`float`) -- If we are using SGD, what value to use for momentum * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9` * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999` * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8 """ super().__init__() if type(model_params) is dict: self.model = create_model_for('classify', **model_params) else: self.model = model_params self.optimizer = EagerOptimizer(loss, **kwargs) self.nsteps = kwargs.get('nsteps', six.MAXSIZE) self._checkpoint = tf.train.Checkpoint(optimizer=self.optimizer.optimizer, model=self.model) checkpoint_dir = '{}-{}'.format("./tf-classify", os.getpid()) self.checkpoint_manager = tf.train.CheckpointManager(self._checkpoint, directory=checkpoint_dir, max_to_keep=5)
Example #21
Source File: distributed.py From mead-baseline with Apache License 2.0 | 5 votes |
def __init__(self, model_params, **kwargs): """Create a Trainer, and give it the parameters needed to instantiate the model :param model_params: The model parameters :param kwargs: See below :Keyword Arguments: * *nsteps* (`int`) -- If we should report every n-steps, this should be passed * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e * *clip* (`int`) -- If we are doing gradient clipping, what value to use * *optim* (`str`) -- The name of the optimizer we are using * *lr* (`float`) -- The learning rate we are using * *mom* (`float`) -- If we are using SGD, what value to use for momentum * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9` * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999` * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8 """ super().__init__() self.gpus = int(kwargs.get('gpus', 1)) if type(model_params) is dict: self.model = create_model_for('classify', **model_params) else: self.model = model_params self.optimizer = EagerOptimizer(loss, **kwargs) self.nsteps = kwargs.get('nsteps', six.MAXSIZE) self._checkpoint = tf.train.Checkpoint(optimizer=self.optimizer.optimizer, model=self.model) checkpoint_dir = '{}-{}'.format("./tf-classify", os.getpid()) self.checkpoint_manager = tf.train.CheckpointManager(self._checkpoint, directory=checkpoint_dir, max_to_keep=5) devices = ['/device:GPU:{}'.format(i) for i in range(self.gpus)] self.strategy = tf.distribute.MirroredStrategy(devices)
Example #22
Source File: utils.py From mead-baseline with Apache License 2.0 | 5 votes |
def __init__(self, model_params, **kwargs): """Create a Trainer, and give it the parameters needed to instantiate the model :param model_params: The model parameters :param kwargs: See below :Keyword Arguments: * *nsteps* (`int`) -- If we should report every n-steps, this should be passed * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e * *clip* (`int`) -- If we are doing gradient clipping, what value to use * *optim* (`str`) -- The name of the optimizer we are using * *lr* (`float`) -- The learning rate we are using * *mom* (`float`) -- If we are using SGD, what value to use for momentum * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9` * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999` * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8 """ super().__init__() if type(model_params) is dict: self.model = create_model_for('tagger', **model_params) else: self.model = model_params self.sess = self.model.sess self.loss = self.model.create_loss() span_type = kwargs.get('span_type', 'iob') verbose = kwargs.get('verbose', False) self.evaluator = TaggerEvaluatorTf(self.model, span_type, verbose) self.global_step, self.train_op = optimizer(self.loss, colocate_gradients_with_ops=True, variables=self.model.trainable_variables, **kwargs) self.nsteps = kwargs.get('nsteps', six.MAXSIZE) tables = tf.compat.v1.tables_initializer() self.model.sess.run(tables) init = tf.compat.v1.global_variables_initializer() self.model.sess.run(init) saver = tf.compat.v1.train.Saver() self.model.save_using(saver) checkpoint = kwargs.get('checkpoint') if checkpoint is not None: skip_blocks = kwargs.get('blocks_to_skip', ['OptimizeLoss']) reload_checkpoint(self.model.sess, checkpoint, skip_blocks)
Example #23
Source File: utils.py From mead-baseline with Apache License 2.0 | 5 votes |
def _try_user_cmp(user_cmp): user_cmp = user_cmp.lower() if user_cmp in {"lt", "less", "less than", "<", "less_than"}: return lt, six.MAXSIZE if user_cmp in {"le", "lte", "<="}: return le, six.MAXSIZE if user_cmp in {"ge", "gte", ">="}: return ge, -six.MAXSIZE - 1 return gt, -six.MAXSIZE - 1
Example #24
Source File: utils.py From mead-baseline with Apache License 2.0 | 5 votes |
def get_metric_cmp(metric, user_cmp=None, less_than_metrics=LESS_THAN_METRICS): if user_cmp is not None: return _try_user_cmp(user_cmp) if metric in less_than_metrics: return lt, six.MAXSIZE return gt, -six.MAXSIZE - 1
Example #25
Source File: train.py From mead-baseline with Apache License 2.0 | 5 votes |
def __init__(self, model, **kwargs): if type(model) is dict: model = create_model_for('classify', **model) super().__init__() if type(model) is dict: model = create_model_for('classify', **model) self.clip = float(kwargs.get('clip', 5)) self.labels = model.labels self.gpus = int(kwargs.get('gpus', 1)) if self.gpus == -1: self.gpus = len(os.getenv('CUDA_VISIBLE_DEVICES', os.getenv('NV_GPU', '0')).split(',')) self.optimizer = OptimizerManager(model, **kwargs) self.model = model if self.gpus > 0 and self.model.gpu: self.crit = model.create_loss().cuda() if self.gpus > 1: self.model = torch.nn.DataParallel(model).cuda() else: self.model.cuda() else: logger.warning("Requested training on CPU. This will be slow.") self.crit = model.create_loss() self.model = model self.nsteps = kwargs.get('nsteps', six.MAXSIZE)
Example #26
Source File: import_geonames.py From EpiTator with Apache License 2.0 | 5 votes |
def read_geonames_csv(): print("Downloading geoname data from: " + GEONAMES_ZIP_URL) try: url = request.urlopen(GEONAMES_ZIP_URL) except URLError: print("If you are operating behind a firewall, try setting the HTTP_PROXY/HTTPS_PROXY environment variables.") raise zipfile = ZipFile(BytesIO(url.read())) print("Download complete") # Loading geonames data may cause errors without setting csv.field_size_limit: if sys.platform == "win32": max_c_long_on_windows = (2**32 / 2) - 1 csv.field_size_limit(max_c_long_on_windows) else: csv.field_size_limit(sys.maxint if six.PY2 else six.MAXSIZE) with zipfile.open('allCountries.txt') as f: reader = unicodecsv.DictReader(f, fieldnames=[ k for k, v in geonames_field_mappings], encoding='utf-8', delimiter='\t', quoting=csv.QUOTE_NONE) for d in reader: d['population'] = parse_number(d['population'], 0) d['latitude'] = parse_number(d['latitude'], 0) d['longitude'] = parse_number(d['longitude'], 0) if len(d['alternatenames']) > 0: d['alternatenames'] = d['alternatenames'].split(',') else: d['alternatenames'] = [] yield d
Example #27
Source File: logclient_operator.py From aliyun-log-python-sdk with MIT License | 5 votes |
def query_more(fn, offset, size, batch_size, *args): """list all data using the fn """ if size < 0: expected_total_size = six.MAXSIZE else: expected_total_size = size batch_size = min(size, batch_size) response = None total_count_got = 0 complete = False while True: ret = fn(*args, offset=offset, size=batch_size) if response is None: response = ret else: response.merge(ret) # if incompete, exit if not ret.is_completed(): break count = ret.get_count() offset += count total_count_got += count batch_size = min(batch_size, expected_total_size - total_count_got) if count == 0 or total_count_got >= expected_total_size: break return response
Example #28
Source File: logclient_operator.py From aliyun-log-python-sdk with MIT License | 5 votes |
def list_more(fn, offset, size, batch_size, *args): """list all data using the fn """ if size < 0: expected_total_size = six.MAXSIZE else: expected_total_size = size batch_size = min(size, batch_size) response = None total_count_got = 0 while True: ret = fn(*args, offset=offset, size=batch_size) if response is None: response = ret else: response.merge(ret) count = ret.get_count() total = ret.get_total() offset += count total_count_got += count batch_size = min(batch_size, expected_total_size - total_count_got) if count == 0 or offset >= total or total_count_got >= expected_total_size: break return response
Example #29
Source File: memlayout.py From ngraph-python with Apache License 2.0 | 5 votes |
def allocate_best_fit(self, size): size = MemoryManager.align(size, self.alignment) best_node = None best_offset = None best_delta = six.MAXSIZE offset = 0 for i, node in enumerate(self.node_list): delta = node.size - size if node.is_free and delta >= 0: if not best_node or delta < best_delta: best_i = i best_node = node best_offset = offset best_delta = delta offset += node.size if not best_node: raise RuntimeError("Bad Allocation") else: if best_delta == 0: best_node.is_free = False else: self.node_list[best_i].size -= size self.node_list.insert(best_i, MemoryNode(size, is_free=False)) self.max_allocation = max(self.max_allocation, best_offset + size) return best_offset
Example #30
Source File: memlayout.py From ngraph-python with Apache License 2.0 | 5 votes |
def __init__(self, alignment): self.alignment = alignment self.node_list = [MemoryNode(six.MAXSIZE)] self.max_allocation = 0