Python numpy.random.randint() Examples
The following are 30
code examples of numpy.random.randint().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: test_eval.py From recruit with Apache License 2.0 | 8 votes |
def test_frame_negate(self): expr = self.ex('-') # float lhs = DataFrame(randn(5, 2)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_frame_equal(expect, result) # int lhs = DataFrame(randint(5, size=(5, 2))) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_frame_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = DataFrame(rand(5, 2) > 0.5) if self.engine == 'numexpr': with pytest.raises(NotImplementedError): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_frame_equal(expect, result)
Example #2
Source File: test_eval.py From recruit with Apache License 2.0 | 8 votes |
def test_series_negate(self): expr = self.ex('-') # float lhs = Series(randn(5)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result) # int lhs = Series(randint(5, size=5)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = Series(rand(5) > 0.5) if self.engine == 'numexpr': with pytest.raises(NotImplementedError): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result)
Example #3
Source File: glyphs.py From sand-glyphs with MIT License | 6 votes |
def _get_glyph(gnum, height, width, shift_prob, shift_size): if isinstance(gnum, list): n = randint(*gnum) else: n = gnum glyph = random_points_in_circle( n, 0, 0, 0.5 )*array((width, height), 'float') _spatial_sort(glyph) if random()<shift_prob: shift = ((-1)**randint(0,2))*shift_size*height glyph[:,1] += shift if random()<0.5: ii = randint(0,n-1,size=(1)) xy = glyph[ii,:] glyph = row_stack((glyph, xy)) return glyph
Example #4
Source File: transforms.py From mmdetection with Apache License 2.0 | 6 votes |
def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None
Example #5
Source File: transforms.py From mmdetection with Apache License 2.0 | 6 votes |
def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx
Example #6
Source File: plane_data2.py From e2c with Apache License 2.0 | 6 votes |
def sample(self, batch_size): """ computes (x_t,u_t,x_{t+1}) pair returns tuple of 3 ndarrays with shape (batch,x_dim), (batch, u_dim), (batch, x_dim) """ if not self.initialized: raise ValueError("Dataset not loaded - call PlaneData.initialize() first.") traj=randint(0,num_t,size=batch_size) # which trajectory tt=randint(0,T-1,size=batch_size) # time step t for each batch X0=np.zeros((batch_size,x_dim)) U0=np.zeros((batch_size,u_dim),dtype=np.int) X1=np.zeros((batch_size,x_dim)) for i in range(batch_size): t=tt[i] p=self.P[traj[i], t, :] X0[i,:]=self.getX(traj[i],t) X1[i,:]=self.getX(traj[i],t+1) U0[i,:]=self.U[traj[i], t, :] return (X0,U0,X1)
Example #7
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def test_count_nonzero_axis_consistent(self): # Check that the axis behaviour for valid axes in # non-special cases is consistent (and therefore # correct) by checking it against an integer array # that is then casted to the generic object dtype from itertools import combinations, permutations axis = (0, 1, 2, 3) size = (5, 5, 5, 5) msg = "Mismatch for axis: %s" rng = np.random.RandomState(1234) m = rng.randint(-100, 100, size=size) n = m.astype(object) for length in range(len(axis)): for combo in combinations(axis, length): for perm in permutations(combo): assert_equal( np.count_nonzero(m, axis=perm), np.count_nonzero(n, axis=perm), err_msg=msg % (perm,))
Example #8
Source File: test_eval.py From recruit with Apache License 2.0 | 6 votes |
def test_series_pos(self): expr = self.ex('+') # float lhs = Series(randn(5)) expect = lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result) # int lhs = Series(randint(5, size=5)) expect = lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = Series(rand(5) > 0.5) expect = lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result)
Example #9
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 6 votes |
def test_identity_module(self): """ identity module should preserve input """ with IsolatedSession() as issn: pred_input = tf.placeholder(tf.float32, [None, None]) final_output = tf.identity(pred_input, name='output') gfn = issn.asGraphFunction([pred_input], [final_output]) for _ in range(10): m, n = prng.randint(10, 1000, size=2) mat = prng.randn(m, n).astype(np.float32) with IsolatedSession() as issn: feeds, fetches = issn.importGraphFunction(gfn) mat_out = issn.run(fetches[0], {feeds[0]: mat}) self.assertTrue(np.all(mat_out == mat))
Example #10
Source File: dataset.py From deep-smoke-machine with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _sample_indices(self, record): """ :param record: VideoRecord :return: list """ if self.dense_sample: # i3d dense sample sample_pos = max(1, 1 + record.num_frames - 64) t_stride = 64 // self.num_segments start_idx = 0 if sample_pos == 1 else np.random.randint(0, sample_pos - 1) offsets = [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)] return np.array(offsets) + 1 else: # normal sample average_duration = (record.num_frames - self.new_length + 1) // self.num_segments if average_duration > 0: offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration, size=self.num_segments) elif record.num_frames > self.num_segments: offsets = np.sort(randint(record.num_frames - self.new_length + 1, size=self.num_segments)) else: offsets = np.zeros((self.num_segments,)) return offsets + 1
Example #11
Source File: kde.py From lambda-packs with MIT License | 6 votes |
def resample(self, size=None): """ Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the underlying dataset. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = self.n norm = transpose(multivariate_normal(zeros((self.d,), float), self.covariance, size=size)) indices = randint(0, self.n, size=size) means = self.dataset[:, indices] return means + norm
Example #12
Source File: test_random.py From vnpy_crypto with MIT License | 5 votes |
def test_scalar(self): s = np.random.RandomState(0) assert_equal(s.randint(1000), 684) s = np.random.RandomState(4294967295) assert_equal(s.randint(1000), 419)
Example #13
Source File: test_shape_base.py From vnpy_crypto with MIT License | 5 votes |
def test_kroncompare(self): from numpy.random import randint reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] for s in shape: b = randint(0, 10, size=s) for r in reps: a = np.ones(r, b.dtype) large = tile(b, r) klarge = kron(a, b) assert_equal(large, klarge)
Example #14
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes, labels): im = image.copy() im, boxes, labels = self.rand_brightness(im, boxes, labels) if random.randint(2): distort = Compose(self.pd[:-1]) else: distort = Compose(self.pd[1:]) im, boxes, labels = distort(im, boxes, labels) return self.rand_light_noise(im, boxes, labels)
Example #15
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes, classes): _, width, _ = image.shape if random.randint(2): image = image[:, ::-1] boxes = boxes.copy() boxes[:, 0::2] = width - boxes[:, 2::-2] return image, boxes, classes
Example #16
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image += delta return image, boxes, labels
Example #17
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image *= alpha return image, boxes, labels
Example #18
Source File: test_arrayterator.py From vnpy_crypto with MIT License | 5 votes |
def test(): np.random.seed(np.arange(10)) # Create a random array ndims = randint(5)+1 shape = tuple(randint(10)+1 for dim in range(ndims)) els = reduce(mul, shape) a = np.arange(els) a.shape = shape buf_size = randint(2*els) b = Arrayterator(a, buf_size) # Check that each block has at most ``buf_size`` elements for block in b: assert_(len(block.flat) <= (buf_size or els)) # Check that all elements are iterated correctly assert_(list(b.flat) == list(a.flat)) # Slice arrayterator start = [randint(dim) for dim in shape] stop = [randint(dim)+1 for dim in shape] step = [randint(dim)+1 for dim in shape] slice_ = tuple(slice(*t) for t in zip(start, stop, step)) c = b[slice_] d = a[slice_] # Check that each block has at most ``buf_size`` elements for block in c: assert_(len(block.flat) <= (buf_size or els)) # Check that the arrayterator is sliced correctly assert_(np.all(c.__array__() == d)) # Check that all elements are iterated correctly assert_(list(c.flat) == list(d.flat))
Example #19
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): swap = self.perms[random.randint(len(self.perms))] shuffle = SwapChannels(swap) # shuffle channels image = shuffle(image) return image, boxes, labels
Example #20
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 0] += random.uniform(-self.delta, self.delta) image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 return image, boxes, labels
Example #21
Source File: augmentations.py From ScanSSD with MIT License | 5 votes |
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 1] *= random.uniform(self.lower, self.upper) return image, boxes, labels
Example #22
Source File: test_arrayterator.py From lambda-packs with MIT License | 5 votes |
def test(): np.random.seed(np.arange(10)) # Create a random array ndims = randint(5)+1 shape = tuple(randint(10)+1 for dim in range(ndims)) els = reduce(mul, shape) a = np.arange(els) a.shape = shape buf_size = randint(2*els) b = Arrayterator(a, buf_size) # Check that each block has at most ``buf_size`` elements for block in b: assert_(len(block.flat) <= (buf_size or els)) # Check that all elements are iterated correctly assert_(list(b.flat) == list(a.flat)) # Slice arrayterator start = [randint(dim) for dim in shape] stop = [randint(dim)+1 for dim in shape] step = [randint(dim)+1 for dim in shape] slice_ = tuple(slice(*t) for t in zip(start, stop, step)) c = b[slice_] d = a[slice_] # Check that each block has at most ``buf_size`` elements for block in c: assert_(len(block.flat) <= (buf_size or els)) # Check that the arrayterator is sliced correctly assert_(np.all(c.__array__() == d)) # Check that all elements are iterated correctly assert_(list(c.flat) == list(d.flat))
Example #23
Source File: test_shape_base.py From lambda-packs with MIT License | 5 votes |
def test_kroncompare(self): from numpy.random import randint reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] for s in shape: b = randint(0, 10, size=s) for r in reps: a = np.ones(r, b.dtype) large = tile(b, r) klarge = kron(a, b) assert_equal(large, klarge)
Example #24
Source File: minibatch.py From pytorch-FPN with MIT License | 5 votes |
def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \ 'num_images ({}) must divide BATCH_SIZE ({})'. \ format(num_images, cfg.TRAIN.BATCH_SIZE) # Get the input image blob, formatted for caffe im_blob, im_scales = _get_image_blob(roidb, random_scale_inds) blobs = {'data': im_blob} assert len(im_scales) == 1, "Single batch only" assert len(roidb) == 1, "Single batch only" # gt boxes: (x1, y1, x2, y2, cls) if cfg.TRAIN.USE_ALL_GT: # Include all ground truth boxes gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0] else: # For the COCO ground truth boxes, exclude the ones that are ''iscrowd'' gt_inds = np.where(roidb[0]['gt_classes'] != 0 & np.all(roidb[0]['gt_overlaps'].toarray() > -1.0, axis=1))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] * im_scales[0] gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] blobs['gt_boxes'] = gt_boxes blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs
Example #25
Source File: dataset.py From deep-smoke-machine with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __getitem__(self, index): record = self.video_list[index] # check this is a legit video folder if self.image_tmpl == 'flow_{}_{:05d}.jpg': file_name = self.image_tmpl.format('x', 1) full_path = os.path.join(self.root_path, record.path, file_name) elif self.image_tmpl == '{:06d}-{}_{:05d}.jpg': file_name = self.image_tmpl.format(int(record.path), 'x', 1) full_path = os.path.join(self.root_path, '{:06d}'.format(int(record.path)), file_name) else: file_name = self.image_tmpl.format(1) full_path = os.path.join(self.root_path, record.path, file_name) while not os.path.exists(full_path): print('################## Not Found:', os.path.join(self.root_path, record.path, file_name)) index = np.random.randint(len(self.video_list)) record = self.video_list[index] if self.image_tmpl == 'flow_{}_{:05d}.jpg': file_name = self.image_tmpl.format('x', 1) full_path = os.path.join(self.root_path, record.path, file_name) elif self.image_tmpl == '{:06d}-{}_{:05d}.jpg': file_name = self.image_tmpl.format(int(record.path), 'x', 1) full_path = os.path.join(self.root_path, '{:06d}'.format(int(record.path)), file_name) else: file_name = self.image_tmpl.format(1) full_path = os.path.join(self.root_path, record.path, file_name) if not self.test_mode: segment_indices = self._sample_indices(record) if self.random_shift else self._get_val_indices(record) else: segment_indices = self._get_test_indices(record) return self.get(record, segment_indices)
Example #26
Source File: dataset.py From deep-smoke-machine with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _get_val_indices(self, record): if self.dense_sample: # i3d dense sample sample_pos = max(1, 1 + record.num_frames - 64) t_stride = 64 // self.num_segments start_idx = 0 if sample_pos == 1 else np.random.randint(0, sample_pos - 1) offsets = [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)] return np.array(offsets) + 1 else: if record.num_frames > self.num_segments + self.new_length - 1: tick = (record.num_frames - self.new_length + 1) / float(self.num_segments) offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)]) else: offsets = np.zeros((self.num_segments,)) return offsets + 1
Example #27
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def rand_shape_2d(dim0=10, dim1=10): return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1)
Example #28
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_flattener_module(self): """ flattener module should preserve input data """ gfn = gfac.buildFlattener() for _ in range(10): m, n = prng.randint(10, 1000, size=2) mat = prng.randn(m, n).astype(np.float32) with IsolatedSession() as issn: feeds, fetches = issn.importGraphFunction(gfn) vec_out = issn.run(fetches[0], {feeds[0]: mat}) self.assertTrue(np.all(vec_out == mat.flatten()))
Example #29
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def rand_shape_3d(dim0=10, dim1=10, dim2=10): return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1), rnd.randint(1, dim2 + 1)
Example #30
Source File: gaussian_mix.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def make_gaussians(cluster_n, img_size): points = [] ref_distrs = [] for i in xrange(cluster_n): mean = (0.1 + 0.8*random.rand(2)) * img_size a = (random.rand(2, 2)-0.5)*img_size*0.1 cov = np.dot(a.T, a) + img_size*0.05*np.eye(2) n = 100 + random.randint(900) pts = random.multivariate_normal(mean, cov, n) points.append( pts ) ref_distrs.append( (mean, cov) ) points = np.float32( np.vstack(points) ) return points, ref_distrs