Python numpy.random.binomial() Examples
The following are 30
code examples of numpy.random.binomial().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: test_random.py From vnpy_crypto with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #2
Source File: test_random.py From recruit with Apache License 2.0 | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #3
Source File: test_random.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #4
Source File: test_random.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #5
Source File: read_simulator.py From altanalyze with Apache License 2.0 | 6 votes |
def sample_binomial_frag_len(frag_mean=200, frag_variance=100): """ Sample a fragment length from a binomial distribution parameterized with a mean and variance. If frag_variance > frag_mean, use a Negative-Binomial distribution. """ assert(abs(frag_mean - frag_variance) > 1) if frag_variance < frag_mean: p = 1 - (frag_variance/float(frag_mean)) # N = mu/(1-(sigma^2/mu)) n = float(frag_mean) / (1 - (float(frag_variance)/float(frag_mean))) return binomial(n, p) else: r = -1 * (power(frag_mean, 2)/float(frag_mean - frag_variance)) p = frag_mean / float(frag_variance) print "Sampling frag_mean=",frag_mean, " frag_variance=", frag_variance print "r: ",r, " p: ", p return negative_binomial(r, p)
Example #6
Source File: test_random.py From coffeegrindsize with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #7
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #8
Source File: test_random.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #9
Source File: test_rank_genes_groups.py From scanpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_example_data(*, sparse=False): # create test object adata = AnnData(np.multiply(binomial(1, 0.15, (100, 20)), negative_binomial(2, 0.25, (100, 20)))) # adapt marker_genes for cluster (so as to have some form of reasonable input adata.X[0:10, 0:5] = np.multiply(binomial(1, 0.9, (10, 5)), negative_binomial(1, 0.5, (10, 5))) # The following construction is inefficient, but makes sure that the same data is used in the sparse case if sparse: adata.X = sp.csr_matrix(adata.X) # Create cluster according to groups adata.obs['true_groups'] = pd.Categorical(np.concatenate(( np.zeros((10,), dtype=int), np.ones((90,), dtype=int), ))) return adata
Example #10
Source File: test_random.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #11
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #12
Source File: test_random.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #13
Source File: read_simulator.py From rmats2sashimiplot with GNU General Public License v2.0 | 6 votes |
def sample_binomial_frag_len(frag_mean=200, frag_variance=100): """ Sample a fragment length from a binomial distribution parameterized with a mean and variance. If frag_variance > frag_mean, use a Negative-Binomial distribution. """ assert(abs(frag_mean - frag_variance) > 1) if frag_variance < frag_mean: p = 1 - (frag_variance/float(frag_mean)) # N = mu/(1-(sigma^2/mu)) n = float(frag_mean) / (1 - (float(frag_variance)/float(frag_mean))) return binomial(n, p) else: r = -1 * (power(frag_mean, 2)/float(frag_mean - frag_variance)) p = frag_mean / float(frag_variance) print "Sampling frag_mean=",frag_mean, " frag_variance=", frag_variance print "r: ",r, " p: ", p return negative_binomial(r, p)
Example #14
Source File: test_random.py From pySINDy with MIT License | 6 votes |
def test_binomial(self): n = [1] p = [0.5] bad_n = [-1] bad_p_one = [-1] bad_p_two = [1.5] binom = np.random.binomial desired = np.array([1, 1, 1]) self.setSeed() actual = binom(n * 3, p) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n * 3, p) assert_raises(ValueError, binom, n * 3, bad_p_one) assert_raises(ValueError, binom, n * 3, bad_p_two) self.setSeed() actual = binom(n, p * 3) assert_array_equal(actual, desired) assert_raises(ValueError, binom, bad_n, p * 3) assert_raises(ValueError, binom, n, bad_p_one * 3) assert_raises(ValueError, binom, n, bad_p_two * 3)
Example #15
Source File: test_random.py From coffeegrindsize with MIT License | 5 votes |
def test_binomial(self): np.random.seed(self.seed) actual = np.random.binomial(100.123, .456, size=(3, 2)) desired = np.array([[37, 43], [42, 48], [46, 45]]) assert_array_equal(actual, desired)
Example #16
Source File: test_random.py From coffeegrindsize with MIT License | 5 votes |
def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.prng.negative_binomial(0.5, 0.5)
Example #17
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) assert_array_equal(random.binomial(zeros, p), zeros)
Example #18
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_binomial(self): np.random.seed(self.seed) actual = np.random.binomial(100.123, .456, size=(3, 2)) desired = np.array([[37, 43], [42, 48], [46, 45]]) np.testing.assert_array_equal(actual, desired)
Example #19
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.prng.negative_binomial(0.5, 0.5)
Example #20
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan)
Example #21
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) np.testing.assert_array_equal(random.binomial(zeros, p), zeros)
Example #22
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_binomial(self): np.random.seed(self.seed) actual = np.random.binomial(100.123, .456, size=(3, 2)) desired = np.array([[37, 43], [42, 48], [46, 45]]) assert_array_equal(actual, desired)
Example #23
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.prng.negative_binomial(0.5, 0.5)
Example #24
Source File: test_random.py From keras-lambda with MIT License | 5 votes |
def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) np.testing.assert_array_equal(random.binomial(zeros, p), zeros)
Example #25
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan)
Example #26
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_n_zero(self): # Tests the corner case of n == 0 for the binomial distribution. # binomial(0, p) should be zero for any p in [0, 1]. # This test addresses issue #3480. zeros = np.zeros(2, dtype='int') for p in [0, .5, 1]: assert_(random.binomial(0, p) == 0) assert_array_equal(random.binomial(zeros, p), zeros)
Example #27
Source File: test_random.py From keras-lambda with MIT License | 5 votes |
def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan)
Example #28
Source File: simulate_counts.py From WASP with Apache License 2.0 | 5 votes |
def simulate_BB(tot, mean_p, sigma): a = mean_p * (1/sigma**2 - 1) b = (1-mean_p) * (1/sigma**2 - 1) p = beta(a, b) counts = binomial(tot, p) #sys.stderr.write("%f %f %i\n"%(mean_p,p,counts)) return counts, (tot-counts)
Example #29
Source File: test_random.py From keras-lambda with MIT License | 5 votes |
def test_negative_binomial(self): # Ensure that the negative binomial results take floating point # arguments without truncation. self.prng.negative_binomial(0.5, 0.5)
Example #30
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_p_is_nan(self): # Issue #4571. assert_raises(ValueError, random.binomial, 1, np.nan)