Python scipy.sum() Examples
The following are 30
code examples of scipy.sum().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateHarmonicTopoIndex(mol): """ ################################################################# Calculation of harmonic topological index proposed by Narnumi. ---->Hato Usage: result=CalculateHarmonicTopoIndex(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ deltas = [x.GetDegree() for x in mol.GetAtoms()] while 0 in deltas: deltas.remove(0) deltas = numpy.array(deltas, "d") nAtoms = mol.GetNumAtoms() res = nAtoms / sum(1.0 / deltas) return res
Example #2
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculatePolarityNumber(mol): """ ################################################################# Calculation of Polarity number. It is the number of pairs of vertexes at distance matrix equal to 3 ---->Pol Usage: result=CalculatePolarityNumber(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ Distance = Chem.GetDistanceMatrix(mol) res = 1.0 / 2 * sum(sum(Distance == 3)) return res
Example #3
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateHarary(mol): """ ################################################################# Calculation of Harary number ---->Thara Usage: result=CalculateHarary(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ Distance = numpy.array(Chem.GetDistanceMatrix(mol), "d") return 1.0 / 2 * (sum(1.0 / Distance[Distance != 0]))
Example #4
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateSchiultz(mol): """ ################################################################# Calculation of Schiultz number ---->Tsch(log value) Usage: result=CalculateSchiultz(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ Distance = numpy.array(Chem.GetDistanceMatrix(mol), "d") Adjacent = numpy.array(Chem.GetAdjacencyMatrix(mol), "d") VertexDegree = sum(Adjacent) return sum(scipy.dot((Distance + Adjacent), VertexDegree))
Example #5
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateZagreb1(mol): """ ################################################################# Calculation of Zagreb index with order 1 in a molecule ---->ZM1 Usage: result=CalculateZagreb1(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ deltas = [x.GetDegree() for x in mol.GetAtoms()] return sum(numpy.array(deltas) ** 2)
Example #6
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateWeiner(mol): """ ################################################################# Calculation of Weiner number in a molecule ---->W Usage: result=CalculateWeiner(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ return 1.0 / 2 * sum(sum(Chem.GetDistanceMatrix(mol)))
Example #7
Source File: MR.py From mr_saliency with GNU General Public License v2.0 | 6 votes |
def __MR_W_D_matrix(self,img,labels): s = sp.amax(labels)+1 vect = self.__MR_superpixel_mean_vector(img,labels) adj = self.__MR_get_adj_loop(labels) W = sp.spatial.distance.squareform(sp.spatial.distance.pdist(vect)) W = sp.exp(-1*W / self.weight_parameters['delta']) W[adj.astype(np.bool)] = 0 D = sp.zeros((s,s)).astype(float) for i in range(s): D[i, i] = sp.sum(W[i]) return W,D
Example #8
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateZagreb2(mol): """ ################################################################# Calculation of Zagreb index with order 2 in a molecule ---->ZM2 Usage: result=CalculateZagreb2(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ ke = [ x.GetBeginAtom().GetDegree() * x.GetEndAtom().GetDegree() for x in mol.GetBonds() ] return sum(ke)
Example #9
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculateMZagreb2(mol): """ ################################################################# Calculation of Modified Zagreb index with order 2 in a molecule ---->MZM2 Usage: result=CalculateMZagreb2(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ cc = [ x.GetBeginAtom().GetDegree() * x.GetEndAtom().GetDegree() for x in mol.GetBonds() ] while 0 in cc: cc.remove(0) cc = numpy.array(cc, "d") res = sum((1.0 / cc) ** 2) return res
Example #10
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CalculatePlatt(mol): """ ################################################################# Calculation of Platt number in a molecule ---->Platt Usage: result=CalculatePlatt(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ cc = [ x.GetBeginAtom().GetDegree() + x.GetEndAtom().GetDegree() - 2 for x in mol.GetBonds() ] return sum(cc)
Example #11
Source File: recipe-576547.py From code with MIT License | 6 votes |
def coupling_optim(y,t): creation=s.zeros(n_bin) destruction=s.zeros(n_bin) #now I try to rewrite this in a more optimized way destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\ #the destruction of k-mers kyn = kernel*y[:,s.newaxis]*y[s.newaxis,:] for k in xrange(n_bin): creation[k] = s.sum(kyn[s.arange(k),k-s.arange(k)-1]) creation=0.5*creation out=creation+destruction return out #Now I go for the optimal optimization of the chi_{i,j,k} coefficients used by Garrick for # dealing with a non-uniform grid.
Example #12
Source File: recipe-576547.py From code with MIT License | 6 votes |
def coupling_optim_garrick(y,t): creation=s.zeros(n_bin) destruction=s.zeros(n_bin) #now I try to rewrite this in a more optimized way destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\ #the destruction of k-mers for k in xrange(n_bin): kyn = (kernel*f_garrick[:,:,k])*y[:,s.newaxis]*y[s.newaxis,:] creation[k] = s.sum(kyn) creation=0.5*creation out=creation+destruction return out #Now I work with the function for espressing smoluchowski equation when a uniform grid is used
Example #13
Source File: _docopyregression.py From pyradi with MIT License | 6 votes |
def compare_images(img1, img2, method='zeronorm'): # normalize to compensate for exposure difference, this may be unnecessary # consider disabling it img1 = normalize(img1) img2 = normalize(img2) # calculate the difference and its norms diff = img1 - img2 # elementwise for scipy arrays if method in 'zeronorm': inorm = norm(diff.ravel(), 0) # Zero norm else: inorm = sum(abs(diff)) # Manhattan norm #normalise by image size inorm /= float(img1.size) return inorm #################################################################################
Example #14
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 5 votes |
def CalculateBertzCT(mol): """ ################################################################# A topological index meant to quantify "complexity" of molecules. Consists of a sum of two terms, one representing the complexity of the bonding, the other representing the complexity of the distribution of heteroatoms. From S. H. Bertz, J. Am. Chem. Soc., vol 103, 3599-3601 (1981) ---->BertzCT(log value) Usage: result=CalculateBertzCT(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ temp = GD.BertzCT(mol) if temp > 0: return numpy.log10(temp) else: return "NaN"
Example #15
Source File: image.py From aggregation with Apache License 2.0 | 5 votes |
def compare_images(img1, img2): # normalize to compensate for exposure difference, this may be unnecessary # consider disabling it img1 = normalize(img1) img2 = normalize(img2) # calculate the difference and its norms diff = img1 - img2 # elementwise for scipy arrays m_norm = sum(abs(diff)) # Manhattan norm z_norm = norm(diff.ravel(), 0) # Zero norm return (m_norm, z_norm)
Example #16
Source File: timeSeries2.py From aggregation with Apache License 2.0 | 5 votes |
def compare_images(img1, img2): # normalize to compensate for exposure difference, this may be unnecessary # consider disabling it img1 = normalize(img1) img2 = normalize(img2) # calculate the difference and its norms diff = img1 - img2 # elementwise for scipy arrays m_norm = sum(abs(diff)) # Manhattan norm z_norm = norm(diff.ravel(), 0) # Zero norm return (m_norm, z_norm)
Example #17
Source File: factor_analyzer.py From factor_analyzer with GNU General Public License v2.0 | 5 votes |
def _fit_ml_objective(psi, corr_mtx, n_factors): """ The objective function passed to `minimize()` for ML. Parameters ---------- psi : array-like Value passed to minimize the objective function. corr_mtx : array-like The correlation matrix. n_factors : int The number of factors to select. Returns ------- error : float The scalar error calculated from the residuals of the loading matrix. Note ---- The ML objective is based on the `factanal()` function from R's `stats` package. It may generate results different from the `fa()` function in `psych`. References ---------- [1] https://github.com/SurajGupta/r-source/blob/master/src/library/stats/R/factanal.R """ sc = np.diag(1 / np.sqrt(psi)) sstar = np.dot(np.dot(sc, corr_mtx), sc) # get the eigenvalues and eigenvectors for n_factors values, _ = np.linalg.eigh(sstar) values = values[::-1][n_factors:] # calculate the error error = -(np.sum(np.log(values) - values) - n_factors + corr_mtx.shape[0]) return error
Example #18
Source File: factor_analyzer.py From factor_analyzer with GNU General Public License v2.0 | 5 votes |
def get_communalities(self): """ Calculate the communalities, given the factor loading matrix. Returns ------- communalities : numpy array The communalities from the factor loading matrix. Examples -------- >>> import pandas as pd >>> from factor_analyzer import FactorAnalyzer >>> df_features = pd.read_csv('tests/data/test02.csv') >>> fa = FactorAnalyzer(rotation=None) >>> fa.fit(df_features) FactorAnalyzer(bounds=(0.005, 1), impute='median', is_corr_matrix=False, method='minres', n_factors=3, rotation=None, rotation_kwargs={}, use_smc=True) >>> fa.get_communalities() array([0.588758 , 0.00382308, 0.50452402, 0.72841183, 0.33184336, 0.66208428, 0.61911036, 0.73194557, 0.64929612, 0.71149718]) """ # meets all of our expected criteria check_is_fitted(self, 'loadings_') loadings = self.loadings_.copy() communalities = (loadings ** 2).sum(axis=1) return communalities
Example #19
Source File: factor_analyzer.py From factor_analyzer with GNU General Public License v2.0 | 5 votes |
def _get_factor_variance(loadings): """ A helper method to get the factor variances, because sometimes we need them even before the model is fitted. Parameters ---------- loadings : array-like The factor loading matrix, in whatever state. Returns ------- variance : numpy array The factor variances. proportional_variance : numpy array The proportional factor variances. cumulative_variances : numpy array The cumulative factor variances. """ n_rows = loadings.shape[0] # calculate variance loadings = loadings ** 2 variance = np.sum(loadings, axis=0) # calculate proportional variance proportional_variance = variance / n_rows # calculate cumulative variance cumulative_variance = np.cumsum(proportional_variance, axis=0) return (variance, proportional_variance, cumulative_variance)
Example #20
Source File: ld.py From ldpred with MIT License | 5 votes |
def _calculate_D(snps, snp_i, snp, start_i, stop_i, ld_dict, ld_scores): m, n = snps.shape X = snps[start_i: stop_i] D_i = sp.dot(snp, X.T) / n D_i_shrunk = shrink_r2_mat(D_i,n) r2s = D_i ** 2 ld_dict[snp_i] = D_i_shrunk lds_i = sp.sum(r2s - (1 - r2s) / (n - 2), dtype='float32') ld_scores[snp_i] = lds_i
Example #21
Source File: util.py From ldpred with MIT License | 5 votes |
def count_lines_fast(filename): opener = open if is_gz(filename): opener = gzip.open try: with opener(filename, 'rb') as f: bufgen = takewhile(lambda x: x, (f.raw.read(1024*1024) for _ in repeat(None))) num_lines =sum( buf.count(b'\n') for buf in bufgen ) except Exception: num_lines = -1 return num_lines
Example #22
Source File: util.py From ldpred with MIT License | 5 votes |
def count_lines_slow(filename): opener = open if is_gz(filename): opener = gzip.open try: with opener(filename, 'rb') as f: num_lines = sum(1 for line in f) except Exception: num_lines=-1 return num_lines
Example #23
Source File: plinkfiles.py From ldpred with MIT License | 5 votes |
def parse_plink_snps(genotype_file, snp_indices): plinkf = plinkfile.PlinkFile(genotype_file) samples = plinkf.get_samples() num_individs = len(samples) num_snps = len(snp_indices) raw_snps = sp.empty((num_snps, num_individs), dtype='int8') # If these indices are not in order then we place them in the right place while parsing SNPs. snp_order = sp.argsort(snp_indices) ordered_snp_indices = list(snp_indices[snp_order]) ordered_snp_indices.reverse() # Iterating over file to load SNPs snp_i = 0 next_i = ordered_snp_indices.pop() line_i = 0 max_i = ordered_snp_indices[0] while line_i <= max_i: if line_i < next_i: next(plinkf) elif line_i == next_i: line = next(plinkf) snp = sp.array(line, dtype='int8') bin_counts = line.allele_counts() if bin_counts[-1] > 0: mode_v = sp.argmax(bin_counts[:2]) snp[snp == 3] = mode_v s_i = snp_order[snp_i] raw_snps[s_i] = snp if line_i < max_i: next_i = ordered_snp_indices.pop() snp_i += 1 line_i += 1 plinkf.close() assert snp_i == len(raw_snps), 'Parsing SNPs from plink file failed.' num_indivs = len(raw_snps[0]) freqs = sp.sum(raw_snps, 1, dtype='float32') / (2 * float(num_indivs)) return raw_snps, freqs
Example #24
Source File: util.py From temci with GNU General Public License v3.0 | 5 votes |
def geom_std(values: t.List[float]) -> float: """ Calculates the geometric standard deviation for the passed values. Source: https://en.wikipedia.org/wiki/Geometric_standard_deviation """ import scipy.stats as stats import scipy as sp gmean = stats.gmean(values) return sp.exp(sp.sqrt(sp.sum([sp.log(x / gmean) ** 2 for x in values]) / len(values)))
Example #25
Source File: topology.py From PyBioMed with BSD 3-Clause "New" or "Revised" License | 5 votes |
def CalculateXuIndex(mol): """ ################################################################# Calculation of Xu index ---->Xu Usage: result=CalculateXuIndex(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ nAT = mol.GetNumAtoms() deltas = [x.GetDegree() for x in mol.GetAtoms()] Distance = Chem.GetDistanceMatrix(mol) sigma = scipy.sum(Distance, axis=1) temp1 = 0.0 temp2 = 0.0 for i in range(nAT): temp1 = temp1 + deltas[i] * ((sigma[i]) ** 2) temp2 = temp2 + deltas[i] * (sigma[i]) Xu = numpy.sqrt(nAT) * numpy.log(temp1 / temp2) return Xu
Example #26
Source File: histogram.py From brats_segmentation-pytorch with MIT License | 5 votes |
def __minowski_low_positive_integer_p(h1, h2, p = 2): # 11..43 us for p = 1..24 \w 100 bins """ A faster implementation of the Minowski distance for positive integer < 25. @note do not use this function directly, but the general @link minowski() method. @note the passed histograms must be scipy arrays. """ mult = scipy.absolute(h1 - h2) dif = mult for _ in range(p - 1): dif = scipy.multiply(dif, mult) return math.pow(scipy.sum(dif), 1./p)
Example #27
Source File: histogram.py From brats_segmentation-pytorch with MIT License | 5 votes |
def __minowski_low_negative_integer_p(h1, h2, p = 2): # 14..46 us for p = -1..-24 \w 100 bins """ A faster implementation of the Minowski distance for negative integer > -25. @note do not use this function directly, but the general @link minowski() method. @note the passed histograms must be scipy arrays. """ mult = scipy.absolute(h1 - h2) dif = mult for _ in range(-p + 1): dif = scipy.multiply(dif, mult) return math.pow(scipy.sum(1./dif), 1./p)
Example #28
Source File: histogram.py From brats_segmentation-pytorch with MIT License | 5 votes |
def manhattan(h1, h2): # # 7 us @array, 31 us @list \w 100 bins r""" Equal to Minowski distance with :math:`p=1`. See also -------- minowski """ h1, h2 = __prepare_histogram(h1, h2) return scipy.sum(scipy.absolute(h1 - h2))
Example #29
Source File: histogram.py From brats_segmentation-pytorch with MIT License | 5 votes |
def euclidean(h1, h2): # 9 us @array, 33 us @list \w 100 bins r""" Equal to Minowski distance with :math:`p=2`. See also -------- minowski """ h1, h2 = __prepare_histogram(h1, h2) return math.sqrt(scipy.sum(scipy.square(scipy.absolute(h1 - h2))))
Example #30
Source File: histogram.py From brats_segmentation-pytorch with MIT License | 5 votes |
def __kullback_leibler(h1, h2): # 36.3 us """ The actual KL implementation. @see kullback_leibler() for details. Expects the histograms to be of type scipy.ndarray. """ result = h1.astype(scipy.float_) mask = h1 != 0 result[mask] = scipy.multiply(h1[mask], scipy.log(h1[mask] / h2[mask])) return scipy.sum(result)