Python scipy.eye() Examples
The following are 13
code examples of scipy.eye().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: test_umfpack.py From Computable with MIT License | 6 votes |
def test_complex_lu(self): """Getting factors of complex matrix""" umfpack = um.UmfpackContext("zi") for A in self.complex_matrices: umfpack.numeric(A) (L,U,P,Q,R,do_recip) = umfpack.lu(A) L = L.todense() U = U.todense() A = A.todense() if not do_recip: R = 1.0/R R = matrix(diag(R)) P = eye(A.shape[0])[P,:] Q = eye(A.shape[1])[:,Q] assert_array_almost_equal(P*R*A*Q,L*U)
Example #2
Source File: test_umfpack.py From Computable with MIT License | 6 votes |
def test_real_lu(self): """Getting factors of real matrix""" umfpack = um.UmfpackContext("di") for A in self.real_matrices: umfpack.numeric(A) (L,U,P,Q,R,do_recip) = umfpack.lu(A) L = L.todense() U = U.todense() A = A.todense() if not do_recip: R = 1.0/R R = matrix(diag(R)) P = eye(A.shape[0])[P,:] Q = eye(A.shape[1])[:,Q] assert_array_almost_equal(P*R*A*Q,L*U)
Example #3
Source File: test_umfpack.py From scikit-umfpack with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_complex_lu(self): # Getting factors of complex matrix umfpack = um.UmfpackContext("zi") for A in self.complex_matrices: umfpack.numeric(A) (L,U,P,Q,R,do_recip) = umfpack.lu(A) L = L.todense() U = U.todense() A = A.todense() if not do_recip: R = 1.0/R R = matrix(diag(R)) P = eye(A.shape[0])[P,:] Q = eye(A.shape[1])[:,Q] assert_array_almost_equal(P*R*A*Q,L*U)
Example #4
Source File: test_umfpack.py From scikit-umfpack with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_complex_int64_lu(self): # Getting factors of complex matrix with long indices umfpack = um.UmfpackContext("zl") for A in self.complex_int64_matrices: umfpack.numeric(A) (L,U,P,Q,R,do_recip) = umfpack.lu(A) L = L.todense() U = U.todense() A = A.todense() if not do_recip: R = 1.0/R R = matrix(diag(R)) P = eye(A.shape[0])[P,:] Q = eye(A.shape[1])[:,Q] assert_array_almost_equal(P*R*A*Q,L*U)
Example #5
Source File: test_umfpack.py From scikit-umfpack with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_real_lu(self): # Getting factors of real matrix umfpack = um.UmfpackContext("di") for A in self.real_matrices: umfpack.numeric(A) (L,U,P,Q,R,do_recip) = umfpack.lu(A) L = L.todense() U = U.todense() A = A.todense() if not do_recip: R = 1.0/R R = matrix(diag(R)) P = eye(A.shape[0])[P,:] Q = eye(A.shape[1])[:,Q] assert_array_almost_equal(P*R*A*Q,L*U)
Example #6
Source File: test_umfpack.py From scikit-umfpack with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_real_int64_lu(self): # Getting factors of real matrix with long indices umfpack = um.UmfpackContext("dl") for A in self.real_int64_matrices: umfpack.numeric(A) (L,U,P,Q,R,do_recip) = umfpack.lu(A) L = L.todense() U = U.todense() A = A.todense() if not do_recip: R = 1.0/R R = matrix(diag(R)) P = eye(A.shape[0])[P,:] Q = eye(A.shape[1])[:,Q] assert_array_almost_equal(P*R*A*Q,L*U)
Example #7
Source File: test_lobpcg.py From Computable with MIT License | 5 votes |
def test_trivial(): n = 5 X = ones((n, 1)) A = eye(n) compare_solutions(A, None, n)
Example #8
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_trivial(): n = 5 X = ones((n, 1)) A = eye(n) compare_solutions(A, None, n)
Example #9
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_diagonal(): # This test was moved from '__main__' in lobpcg.py. # Coincidentally or not, this is the same eigensystem # required to reproduce arpack bug # http://forge.scilab.org/index.php/p/arpack-ng/issues/1397/ # even using the same n=100. np.random.seed(1234) # The system of interest is of size n x n. n = 100 # We care about only m eigenpairs. m = 4 # Define the generalized eigenvalue problem Av = cBv # where (c, v) is a generalized eigenpair, # and where we choose A to be the diagonal matrix whose entries are 1..n # and where B is chosen to be the identity matrix. vals = np.arange(1, n+1, dtype=float) A = scipy.sparse.diags([vals], [0], (n, n)) B = scipy.sparse.eye(n) # Let the preconditioner M be the inverse of A. M = scipy.sparse.diags([np.reciprocal(vals)], [0], (n, n)) # Pick random initial vectors. X = np.random.rand(n, m) # Require that the returned eigenvectors be in the orthogonal complement # of the first few standard basis vectors. m_excluded = 3 Y = np.eye(n, m_excluded) eigs, vecs = lobpcg(A, X, B, M=M, Y=Y, tol=1e-4, maxiter=40, largest=False) assert_allclose(eigs, np.arange(1+m_excluded, 1+m_excluded+m)) _check_eigen(A, eigs, vecs, rtol=1e-3, atol=1e-3)
Example #10
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_hermitian(): np.random.seed(1234) sizes = [3, 10, 50] ks = [1, 3, 10, 50] gens = [True, False] for size, k, gen in itertools.product(sizes, ks, gens): if k > size: continue H = np.random.rand(size, size) + 1.j * np.random.rand(size, size) H = 10 * np.eye(size) + H + H.T.conj() X = np.random.rand(size, k) if not gen: B = np.eye(size) w, v = lobpcg(H, X, maxiter=5000) w0, v0 = eigh(H) else: B = np.random.rand(size, size) + 1.j * np.random.rand(size, size) B = 10 * np.eye(size) + B.dot(B.T.conj()) w, v = lobpcg(H, X, B, maxiter=5000) w0, v0 = eigh(H, B) for wx, vx in zip(w, v.T): # Check eigenvector assert_allclose(np.linalg.norm(H.dot(vx) - B.dot(vx) * wx) / np.linalg.norm(H.dot(vx)), 0, atol=5e-4, rtol=0) # Compare eigenvalues j = np.argmin(abs(w0 - wx)) assert_allclose(wx, w0[j], rtol=1e-4)
Example #11
Source File: MR.py From mr_saliency with GNU General Public License v2.0 | 5 votes |
def __MR_affinity_matrix(self,img,labels): W,D = self.__MR_W_D_matrix(img,labels) aff = pinv(D-self.weight_parameters['alpha']*W) aff[sp.eye(sp.amax(labels)+1).astype(bool)] = 0.0 # diagonal elements to 0 return aff
Example #12
Source File: dataset.py From neural-structured-learning with Apache License 2.0 | 4 votes |
def build_from_adjacency_matrix(name, adj, features, train_mask, val_mask, test_mask, labels, row_normalize=False): """Build from adjacency matrix.""" # Extract train, val, test, unlabeled indices. train_indices = np.where(train_mask)[0] test_indices = np.where(test_mask)[0] val_indices = np.where(val_mask)[0] unlabeled_mask = np.logical_not(train_mask | test_mask | val_mask) unlabeled_indices = np.where(unlabeled_mask)[0] # Extract node features. if row_normalize: features = GCNDataset.preprocess_features(features) features = np.float32(features.todense()) # Extract labels. labels = np.argmax(labels, axis=-1) num_classes = max(labels) + 1 # Extract edges. adj = scipy.sparse.coo_matrix(adj) edges = [ GCNDataset.Edge(src, tgt, val) for src, tgt, val in zip(adj.row, adj.col, adj.data) ] # Preprocessing of adjacency matrix for simple GCN model and conversion to # tuple representation. adj_normalized = GCNDataset.normalize_adj(adj + scipy.eye(adj.shape[0])).astype( np.float32) support = GCNDataset.sparse_to_tuple(adj_normalized) features_matrix = ( GCNDataset.row_normalize(features).astype(np.float32) if row_normalize else features.astype(np.float32)) features_sparse = GCNDataset.sparse_to_tuple(features_matrix) num_features_nonzero = features_sparse[1].shape return GCNDataset( name=name, features=features_matrix, support=support, num_features_nonzero=num_features_nonzero, features_sparse=features_sparse, labels=labels, edges=edges, indices_train=train_indices, indices_test=test_indices, indices_val=val_indices, indices_unlabeled=unlabeled_indices, num_classes=num_classes, feature_preproc_fn=lambda x: x)
Example #13
Source File: LDpred_inf.py From ldpred with MIT License | 4 votes |
def ldpred_inf(beta_hats, h2=0.1, n=1000, inf_shrink_matrices=None, reference_ld_mats=None, genotypes=None, ld_window_size=100, verbose=False): """ Apply the infinitesimal shrink w LD (which requires LD information). If reference_ld_mats are supplied, it uses those, otherwise it uses the LD in the genotype data. If genotypes are supplied, then it assumes that beta_hats and the genotypes are synchronized. """ n = float(n) if verbose: print('Doing LD correction') t0 = time.time() m = len(beta_hats) updated_betas = sp.empty(m) for i, wi in enumerate(range(0, m, ld_window_size)): start_i = wi stop_i = min(m, wi + ld_window_size) curr_window_size = stop_i - start_i if inf_shrink_matrices!=None: A_inv = inf_shrink_matrices[i] else: if reference_ld_mats != None: D = reference_ld_mats[i] else: if genotypes != None: X = genotypes[start_i: stop_i] num_indivs = X.shape[1] D = sp.dot(X, X.T) / num_indivs else: raise NotImplementedError A = ((m / h2) * sp.eye(curr_window_size) + (n / (1.0)) * D) A_inv = linalg.pinv(A) updated_betas[start_i: stop_i] = sp.dot(A_inv * n , beta_hats[start_i: stop_i]) # Adjust the beta_hats if verbose: sys.stdout.write('\r%0.2f%%' % (100.0 * (min(1, float(wi + ld_window_size) / m)))) sys.stdout.flush() t1 = time.time() t = (t1 - t0) if verbose: print('\nIt took %d minutes and %0.2f seconds to perform the Infinitesimal LD shrink' % (t / 60, t % 60)) return updated_betas