Python matplotlib.pyplot.axis() Examples
The following are 30
code examples of matplotlib.pyplot.axis().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pyplot
, or try the search function
.
Example #1
Source File: __init__.py From EDeN with MIT License | 11 votes |
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False): """plot_confusion_matrix.""" cm = confusion_matrix(y_true, y_pred) fmt = "%d" if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fmt = "%.2f" xticklabels = list(sorted(set(y_pred))) yticklabels = list(sorted(set(y_true))) if size is not None: plt.figure(figsize=(size, size)) heatmap(cm, xlabel='Predicted label', ylabel='True label', xticklabels=xticklabels, yticklabels=yticklabels, cmap=plt.cm.Blues, fmt=fmt) if normalize: plt.title("Confusion matrix (norm.)") else: plt.title("Confusion matrix") plt.gca().invert_yaxis()
Example #2
Source File: movie.py From kvae with MIT License | 10 votes |
def save_frames(images, filename): num_sequences, n_steps, w, h = images.shape fig = plt.figure() im = plt.imshow(combine_multiple_img(images[:, 0]), cmap=plt.cm.get_cmap('Greys'), interpolation='none') plt.axis('image') def updatefig(*args): im.set_array(combine_multiple_img(images[:, args[0]])) return im, ani = animation.FuncAnimation(fig, updatefig, interval=500, frames=n_steps) # Either avconv or ffmpeg need to be installed in the system to produce the videos! try: writer = animation.writers['avconv'] except KeyError: writer = animation.writers['ffmpeg'] writer = writer(fps=3) ani.save(filename, writer=writer) plt.close(fig)
Example #3
Source File: data_augmentation.py From Sound-Recognition-Tutorial with Apache License 2.0 | 10 votes |
def demo_plot(): audio = './data/esc10/audio/Dog/1-30226-A.ogg' y, sr = librosa.load(audio, sr=44100) y_ps = librosa.effects.pitch_shift(y, sr, n_steps=6) # n_steps控制音调变化尺度 y_ts = librosa.effects.time_stretch(y, rate=1.2) # rate控制时间维度的变换尺度 plt.subplot(311) plt.plot(y) plt.title('Original waveform') plt.axis([0, 200000, -0.4, 0.4]) # plt.axis([88000, 94000, -0.4, 0.4]) plt.subplot(312) plt.plot(y_ts) plt.title('Time Stretch transformed waveform') plt.axis([0, 200000, -0.4, 0.4]) plt.subplot(313) plt.plot(y_ps) plt.title('Pitch Shift transformed waveform') plt.axis([0, 200000, -0.4, 0.4]) # plt.axis([88000, 94000, -0.4, 0.4]) plt.tight_layout() plt.show()
Example #4
Source File: __init__.py From EDeN with MIT License | 7 votes |
def plot_roc_curve(y_true, y_score, size=None): """plot_roc_curve.""" false_positive_rate, true_positive_rate, thresholds = roc_curve( y_true, y_score) if size is not None: plt.figure(figsize=(size, size)) plt.axis('equal') plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy') plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.ylim([-0.05, 1.05]) plt.xlim([-0.05, 1.05]) plt.grid() plt.title('Receiver operating characteristic AUC={0:0.2f}'.format( roc_auc_score(y_true, y_score)))
Example #5
Source File: movie.py From kvae with MIT License | 7 votes |
def save_movie_to_frame(images, filename, idx=0, cmap='Blues'): # Collect to single image image = movie_to_frame(images[idx]) # Flip it # image = np.fliplr(image) # image = np.flipud(image) f = plt.figure(figsize=[12, 12]) plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1) plt.axis('image') plt.xticks([]) plt.yticks([]) plt.savefig(filename, format='png', bbox_inches='tight', dpi=80) plt.close(f)
Example #6
Source File: visualise_att_maps_epoch.py From Attention-Gated-Networks with MIT License | 7 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # Epochs
Example #7
Source File: recall.py From AerialDetection with Apache License 2.0 | 6 votes |
def plot_num_recall(recalls, proposal_nums): """Plot Proposal_num-Recalls curve. Args: recalls(ndarray or list): shape (k,) proposal_nums(ndarray or list): same shape as `recalls` """ if isinstance(proposal_nums, np.ndarray): _proposal_nums = proposal_nums.tolist() else: _proposal_nums = proposal_nums if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot([0] + _proposal_nums, [0] + _recalls) plt.xlabel('Proposal num') plt.ylabel('Recall') plt.axis([0, proposal_nums.max(), 0, 1]) f.show()
Example #8
Source File: visualise_attention.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title='', alpha=0.8): plt.ion() filters = units.shape[2] fig = plt.figure(figure_id, figsize=(5,5)) fig.clf() for i in range(filters): plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray') plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha) plt.axis('off') plt.colorbar() plt.title(title, fontsize='small') if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # plt.savefig('{}/{}.png'.format(dir_name,time.time())) ## Load options
Example #9
Source File: recall.py From AerialDetection with Apache License 2.0 | 6 votes |
def plot_iou_recall(recalls, iou_thrs): """Plot IoU-Recalls curve. Args: recalls(ndarray or list): shape (k,) iou_thrs(ndarray or list): same shape as `recalls` """ if isinstance(iou_thrs, np.ndarray): _iou_thrs = iou_thrs.tolist() else: _iou_thrs = iou_thrs if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot(_iou_thrs + [1.0], _recalls + [0.]) plt.xlabel('IoU') plt.ylabel('Recall') plt.axis([iou_thrs.min(), 1, 0, 1]) f.show()
Example #10
Source File: visualize.py From dataiku-contrib with Apache License 2.0 | 6 votes |
def display_images(images, titles=None, cols=4, cmap=None, norm=None, interpolation=None): """Display the given set of images, optionally with titles. images: list or array of image tensors in HWC format. titles: optional. A list of titles to display with each image. cols: number of images per row cmap: Optional. Color map to use. For example, "Blues". norm: Optional. A Normalize instance to map values to colors. interpolation: Optional. Image interpolation to use for display. """ titles = titles if titles is not None else [""] * len(images) rows = len(images) // cols + 1 plt.figure(figsize=(14, 14 * rows // cols)) i = 1 for image, title in zip(images, titles): plt.subplot(rows, cols, i) plt.title(title, fontsize=9) plt.axis('off') plt.imshow(image.astype(np.uint8), cmap=cmap, norm=norm, interpolation=interpolation) i += 1 plt.show()
Example #11
Source File: recall.py From mmdetection with Apache License 2.0 | 6 votes |
def plot_num_recall(recalls, proposal_nums): """Plot Proposal_num-Recalls curve. Args: recalls(ndarray or list): shape (k,) proposal_nums(ndarray or list): same shape as `recalls` """ if isinstance(proposal_nums, np.ndarray): _proposal_nums = proposal_nums.tolist() else: _proposal_nums = proposal_nums if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot([0] + _proposal_nums, [0] + _recalls) plt.xlabel('Proposal num') plt.ylabel('Recall') plt.axis([0, proposal_nums.max(), 0, 1]) f.show()
Example #12
Source File: tsne_visualizer.py From linguistic-style-transfer with Apache License 2.0 | 6 votes |
def plot_coordinates(coordinates, plot_path, markers, label_names, fig_num): matplotlib.use('svg') import matplotlib.pyplot as plt plt.figure(fig_num) for i in range(len(markers) - 1): plt.scatter(x=coordinates[markers[i]:markers[i + 1], 0], y=coordinates[markers[i]:markers[i + 1], 1], marker=plot_markers[i % len(plot_markers)], c=colors[i % len(colors)], label=label_names[i], alpha=0.75) plt.legend(loc='upper right', fontsize='x-large') plt.axis('off') plt.savefig(fname=plot_path, format="svg", bbox_inches='tight', transparent=True) plt.close()
Example #13
Source File: plot_alert_pattern_subgraphs.py From AMLSim with Apache License 2.0 | 6 votes |
def plot_alerts(_g, _bank_accts, _output_png): bank_ids = _bank_accts.keys() cmap = plt.get_cmap("tab10") pos = nx.nx_agraph.graphviz_layout(_g) plt.figure(figsize=(12.0, 8.0)) plt.axis('off') for i, bank_id in enumerate(bank_ids): color = cmap(i) members = _bank_accts[bank_id] nx.draw_networkx_nodes(_g, pos, members, node_size=300, node_color=color, label=bank_id) nx.draw_networkx_labels(_g, pos, {n: n for n in members}, font_size=10) edge_labels = nx.get_edge_attributes(_g, "label") nx.draw_networkx_edges(_g, pos) nx.draw_networkx_edge_labels(_g, pos, edge_labels, font_size=6) plt.legend(numpoints=1) plt.subplots_adjust(left=0, right=1, bottom=0, top=1) plt.savefig(_output_png, dpi=120)
Example #14
Source File: VisMPL.py From NURBS-Python with MIT License | 6 votes |
def set_axes_equal(ax): """ Sets equal aspect ratio across the three axes of a 3D plot. Contributed by Xuefeng Zhao. :param ax: a Matplotlib axis, e.g., as output from plt.gca(). """ bounds = [ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()] ranges = [abs(bound[1] - bound[0]) for bound in bounds] centers = [np.mean(bound) for bound in bounds] radius = 0.5 * max(ranges) lower_limits = centers - radius upper_limits = centers + radius ax.set_xlim3d([lower_limits[0], upper_limits[0]]) ax.set_ylim3d([lower_limits[1], upper_limits[1]]) ax.set_zlim3d([lower_limits[2], upper_limits[2]])
Example #15
Source File: show_boxes.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def show_boxes(im, dets, classes, scale = 1.0): plt.cla() plt.axis("off") plt.imshow(im) for cls_idx, cls_name in enumerate(classes): cls_dets = dets[cls_idx] for det in cls_dets: bbox = det[:4] * scale color = (rand(), rand(), rand()) rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=2.5) plt.gca().add_patch(rect) if cls_dets.shape[1] == 5: score = det[-1] plt.gca().text(bbox[0], bbox[1], '{:s} {:.3f}'.format(cls_name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white') plt.show() return im
Example #16
Source File: visualization.py From mac-network with Apache License 2.0 | 6 votes |
def showImgAtt(img, instance, step, ax): dx, dy = 0.05, 0.05 x = np.arange(-1.5, 1.5, dx) y = np.arange(-1.0, 1.0, dy) X, Y = np.meshgrid(x, y) extent = np.min(x), np.max(x), np.min(y), np.max(y) ax.cla() img1 = ax.imshow(img, interpolation = "nearest", extent = extent) ax.imshow(np.array(instance["attentions"]["kb"][step]).reshape(imageDims), cmap = plt.get_cmap(args.cmap), interpolation = "bicubic", extent = extent) ax.set_axis_off() plt.axis("off") ax.set_aspect("auto")
Example #17
Source File: recall.py From mmdetection with Apache License 2.0 | 6 votes |
def plot_iou_recall(recalls, iou_thrs): """Plot IoU-Recalls curve. Args: recalls(ndarray or list): shape (k,) iou_thrs(ndarray or list): same shape as `recalls` """ if isinstance(iou_thrs, np.ndarray): _iou_thrs = iou_thrs.tolist() else: _iou_thrs = iou_thrs if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot(_iou_thrs + [1.0], _recalls + [0.]) plt.xlabel('IoU') plt.ylabel('Recall') plt.axis([iou_thrs.min(), 1, 0, 1]) f.show()
Example #18
Source File: graphTools.py From graph-neural-networks with GNU General Public License v3.0 | 6 votes |
def adjacencyToLaplacian(W): """ adjacencyToLaplacian: Computes the Laplacian from an Adjacency matrix Input: W (np.array): adjacency matrix Output: L (np.array): Laplacian matrix """ # Check that the matrix is square assert W.shape[0] == W.shape[1] # Compute the degree vector d = np.sum(W, axis = 1) # And build the degree matrix D = np.diag(d) # Return the Laplacian return D - W
Example #19
Source File: graphTools.py From graph-neural-networks with GNU General Public License v3.0 | 6 votes |
def normalizeAdjacency(W): """ NormalizeAdjacency: Computes the degree-normalized adjacency matrix Input: W (np.array): adjacency matrix Output: A (np.array): degree-normalized adjacency matrix """ # Check that the matrix is square assert W.shape[0] == W.shape[1] # Compute the degree vector d = np.sum(W, axis = 1) # Invert the square root of the degree d = 1/np.sqrt(d) # And build the square root inverse degree matrix D = np.diag(d) # Return the Normalized Adjacency return D @ W @ D
Example #20
Source File: plot_lfads.py From DOTA_models with Apache License 2.0 | 6 votes |
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0, color='r', title=None): if bidx is None: vals_txn = np.mean(vals_bxtxn, axis=0) else: vals_txn = vals_bxtxn[bidx,:,:] T, N = vals_txn.shape if n_to_plot > N: n_to_plot = N plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)), color=color, lw=1.0) plt.axis('tight') if title: plt.title(title)
Example #21
Source File: visualise_attention.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() plt.suptitle(title)
Example #22
Source File: visualise_fmaps.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # Load options
Example #23
Source File: utils.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def print_mutation(hyp, results, bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.3g' * len(results) % results # results (P, R, mAP, F1, test_loss) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness if bucket: os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
Example #24
Source File: utils.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def plot_images(imgs, targets, paths=None, fname='images.jpg'): # Plots training images overlaid with targets imgs = imgs.cpu().numpy() targets = targets.cpu().numpy() # targets = targets[targets[:, 1] == 21] # plot only one class fig = plt.figure(figsize=(10, 10)) bs, _, h, w = imgs.shape # batch size, _, height, width bs = min(bs, 16) # limit plot to 16 images ns = np.ceil(bs ** 0.5) # number of subplots for i in range(bs): boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T boxes[[0, 2]] *= w boxes[[1, 3]] *= h plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0)) plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-') plt.axis('off') if paths is not None: s = Path(paths[i]).name plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters fig.tight_layout() fig.savefig(fname, dpi=200) plt.close()
Example #25
Source File: movie.py From kvae with MIT License | 6 votes |
def save_movies_to_frame(images, filename, cmap='Blues'): # Binarize images # images[images > 0] = 1. # Grid images images = np.swapaxes(images, 1, 0) images = np.array([combine_multiple_img(image) for image in images]) # Collect to single image image = movie_to_frame(images) f = plt.figure(figsize=[12, 12]) plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1) plt.axis('image') plt.savefig(filename, format='png', bbox_inches='tight', dpi=80) plt.close(f)
Example #26
Source File: mnist_gan.py From gandlf with MIT License | 6 votes |
def get_mnist_data(binarize=False): """Puts the MNIST data in the right format.""" (X_train, y_train), (X_test, y_test) = mnist.load_data() if binarize: X_test = np.where(X_test >= 10, 1, -1) X_train = np.where(X_train >= 10, 1, -1) else: X_train = (X_train.astype(np.float32) - 127.5) / 127.5 X_test = (X_test.astype(np.float32) - 127.5) / 127.5 X_train = np.expand_dims(X_train, axis=-1) X_test = np.expand_dims(X_test, axis=-1) y_train = np.expand_dims(y_train, axis=-1) y_test = np.expand_dims(y_test, axis=-1) return (X_train, y_train), (X_test, y_test)
Example #27
Source File: test.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def test(self): list_ = os.listdir("./maps/val/") nums_file = list_.__len__() saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator")) saver.restore(self.sess, "./save_para/model.ckpt") rand_select = np.random.randint(0, nums_file) INPUTS_CONDITION = np.zeros([1, self.img_h, self.img_w, 3]) INPUTS = np.zeros([1, self.img_h, self.img_w, 3]) img = np.array(Image.open(self.path + list_[rand_select])) img_h, img_w = img.shape[0], img.shape[1] INPUTS_CONDITION[0] = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0 INPUTS[0] = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0 [fake_img] = self.sess.run([self.inputs_fake], feed_dict={self.inputs_condition: INPUTS_CONDITION}) out_img = np.concatenate((INPUTS_CONDITION[0], fake_img[0], INPUTS[0]), axis=1) Image.fromarray(np.uint8((out_img + 1.0)*127.5)).save("./results/1.jpg") plt.imshow(np.uint8((out_img + 1.0)*127.5)) plt.grid("off") plt.axis("off") plt.show()
Example #28
Source File: test.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def generator(self, inputs_condition): inputs = inputs_condition with tf.variable_scope("generator", reuse=tf.AUTO_REUSE): inputs1 = leaky_relu(conv2d("conv1", inputs, 64, 5, 2))#128x128x128 inputs2 = leaky_relu(instanceNorm("in1", conv2d("conv2", inputs1, 128, 5, 2)))#64x64x256 inputs3 = leaky_relu(instanceNorm("in2", conv2d("conv3", inputs2, 256, 5, 2)))#32x32x512 inputs4 = leaky_relu(instanceNorm("in3", conv2d("conv4", inputs3, 512, 5, 2)))#16x16x512 inputs5 = leaky_relu(instanceNorm("in4", conv2d("conv5", inputs4, 512, 5, 2)))#8x8x512 inputs6 = leaky_relu(instanceNorm("in5", conv2d("conv6", inputs5, 512, 5, 2)))#4x4x512 inputs7 = leaky_relu(instanceNorm("in6", conv2d("conv7", inputs6, 512, 5, 2)))#2x2x512 inputs8 = leaky_relu(instanceNorm("in7", conv2d("conv8", inputs7, 512, 5, 2)))#1x1x512 outputs1 = tf.nn.relu(tf.concat([tf.nn.dropout(instanceNorm("in9", deconv2d("dconv1", inputs8, 512, 5, 2)), 0.5), inputs7], axis=3)) # 2x2x512 outputs2 = tf.nn.relu(tf.concat([tf.nn.dropout(instanceNorm("in10", deconv2d("dconv2", outputs1, 512, 5, 2)), 0.5), inputs6], axis=3)) # 4x4x512 outputs3 = tf.nn.relu(tf.concat([tf.nn.dropout(instanceNorm("in11", deconv2d("dconv3", outputs2, 512, 5, 2)), 0.5), inputs5], axis=3))#8x8x512 outputs4 = tf.nn.relu(tf.concat([instanceNorm("in12", deconv2d("dconv4", outputs3, 512, 5, 2)), inputs4], axis=3))#16x16x512 outputs5 = tf.nn.relu(tf.concat([instanceNorm("in13", deconv2d("dconv5", outputs4, 256, 5, 2)), inputs3], axis=3))#32x32x256 outputs6 = tf.nn.relu(tf.concat([instanceNorm("in14", deconv2d("dconv6", outputs5, 128, 5, 2)), inputs2], axis=3))#64x64x128 outputs7 = tf.nn.relu(tf.concat([instanceNorm("in15", deconv2d("dconv7", outputs6, 64, 5, 2)), inputs1], axis=3))#128x128x64 outputs8 = tf.nn.tanh((deconv2d("dconv8", outputs7, 3, 5, 2)))#256x256x3 return outputs8
Example #29
Source File: demo.py From razzy-spinner with GNU General Public License v3.0 | 6 votes |
def _demo_plot(learning_curve_output, teststats, trainstats=None, take=None): testcurve = [teststats['initialerrors']] for rulescore in teststats['rulescores']: testcurve.append(testcurve[-1] - rulescore) testcurve = [1 - x/teststats['tokencount'] for x in testcurve[:take]] traincurve = [trainstats['initialerrors']] for rulescore in trainstats['rulescores']: traincurve.append(traincurve[-1] - rulescore) traincurve = [1 - x/trainstats['tokencount'] for x in traincurve[:take]] import matplotlib.pyplot as plt r = list(range(len(testcurve))) plt.plot(r, testcurve, r, traincurve) plt.axis([None, None, None, 1.0]) plt.savefig(learning_curve_output)
Example #30
Source File: grid.py From python-control with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _final_setup(ax): ax.set_xlabel('Real') ax.set_ylabel('Imaginary') ax.axhline(y=0, color='black', lw=1) ax.axvline(x=0, color='black', lw=1) plt.axis('equal')