Python numpy.random.seed() Examples
The following are 30
code examples of numpy.random.seed().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: strainsimulationwrapper.py From CAMISIM with Apache License 2.0 | 6 votes |
def _get_simulate_cmd(self, directory_strains, filepath_genome, filepath_gff): """ Get system command to start simulation. Change directory to the strain directory and start simulating strains. @param directory_strains: Directory for the simulated strains @type directory_strains: str | unicode @param filepath_genome: Genome to get simulated strains of @type filepath_genome: str | unicode @param filepath_gff: gff file with gene annotations @type filepath_gff: str | unicode @return: System command line @rtype: str """ cmd_run_simujobrun = "cd {dir}; {executable} {filepath_genome} {filepath_gff} {seed}" + " >> {log}" cmd = cmd_run_simujobrun.format( dir=directory_strains, executable=self._executable_sim, filepath_genome=filepath_genome, filepath_gff=filepath_gff, seed=self._get_seed(), log=os.path.join(directory_strains, os.path.basename(filepath_genome) + ".sim.log") ) return cmd
Example #2
Source File: test_graphs.py From drmad with MIT License | 6 votes |
def test_hess_vector_prod(): npr.seed(1) randv = npr.randn(10) def fun(x): return np.sin(np.dot(x, randv)) df = grad(fun) def vector_product(x, v): return np.sin(np.dot(v, df(x))) ddf = grad(vector_product) A = npr.randn(10) B = npr.randn(10) check_grads(fun, A) check_grads(vector_product, A, B) # TODO: # Grad three or more, wrt different args # Diamond patterns # Taking grad again after returning const # Empty functions # 2nd derivatives with fanout, thinking about the outgrad adder
Example #3
Source File: test_image.py From neural-network-animation with MIT License | 6 votes |
def test_imsave_color_alpha(): # Test that imsave accept arrays with ndim=3 where the third dimension is # color and alpha without raising any exceptions, and that the data is # acceptably preserved through a save/read roundtrip. from numpy import random random.seed(1) data = random.rand(256, 128, 4) buff = io.BytesIO() plt.imsave(buff, data) buff.seek(0) arr_buf = plt.imread(buff) # Recreate the float -> uint8 -> float32 conversion of the data data = (255*data).astype('uint8').astype('float32')/255 # Wherever alpha values were rounded down to 0, the rgb values all get set # to 0 during imsave (this is reasonable behaviour). # Recreate that here: for j in range(3): data[data[:, :, 3] == 0, j] = 1 assert_array_equal(data, arr_buf)
Example #4
Source File: test.py From block with Apache License 2.0 | 6 votes |
def test_np(): npr.seed(0) nx, nineq, neq = 4, 6, 7 Q = npr.randn(nx, nx) G = npr.randn(nineq, nx) A = npr.randn(neq, nx) D = np.diag(npr.rand(nineq)) K_ = np.bmat(( (Q, np.zeros((nx, nineq)), G.T, A.T), (np.zeros((nineq, nx)), D, np.eye(nineq), np.zeros((nineq, neq))), (G, np.eye(nineq), np.zeros((nineq, nineq + neq))), (A, np.zeros((neq, nineq + nineq + neq))) )) K = block(( (Q, 0, G.T, A.T), (0, D, 'I', 0), (G, 'I', 0, 0), (A, 0, 0, 0) )) assert np.allclose(K_, K)
Example #5
Source File: test_factor.py From zipline-chinese with Apache License 2.0 | 6 votes |
def test_returns(self, seed_value, window_length): returns = Returns(window_length=window_length) today = datetime64(1, 'ns') assets = arange(3) out = empty((3,), dtype=float) seed(seed_value) # Seed so we get deterministic results. test_data = abs(randn(window_length, 3)) # Calculate the expected returns expected = (test_data[-1] - test_data[0]) / test_data[0] out = empty((3,), dtype=float) returns.compute(today, assets, out, test_data) check_allclose(expected, out)
Example #6
Source File: test.py From qpth with Apache License 2.0 | 6 votes |
def get_grads(nBatch=1, nz=10, neq=1, nineq=3, Qscale=1., Gscale=1., hscale=1., Ascale=1., bscale=1.): assert(nBatch == 1) npr.seed(1) L = np.random.randn(nz, nz) Q = Qscale * L.dot(L.T) G = Gscale * npr.randn(nineq, nz) # h = hscale*npr.randn(nineq) z0 = npr.randn(nz) s0 = npr.rand(nineq) h = G.dot(z0) + s0 A = Ascale * npr.randn(neq, nz) # b = bscale*npr.randn(neq) b = A.dot(z0) p = npr.randn(nBatch, nz) # print(np.linalg.norm(p)) truez = npr.randn(nBatch, nz) Q, p, G, h, A, b, truez = [x.astype(np.float64) for x in [Q, p, G, h, A, b, truez]] _, zhat, nu, lam, slacks = qp_cvxpy.forward_single_np(Q, p[0], G, h, A, b) grads = get_grads_torch(Q, p, G, h, A, b, truez) return [p[0], Q, G, h, A, b, truez], grads
Example #7
Source File: test_helper.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_next_opt_len(self): random.seed(1234) def nums(): for j in range(1, 1000): yield j yield 2**5 * 3**5 * 4**5 + 1 for n in nums(): m = next_fast_len(n) msg = "n=%d, m=%d" % (n, m) assert_(m >= n, msg) # check regularity k = m for d in [2, 3, 5]: while True: a, b = divmod(k, d) if b == 0: k = a else: break assert_equal(k, 1, err_msg=msg)
Example #8
Source File: test_factor.py From catalyst with Apache License 2.0 | 6 votes |
def test_returns(self, seed_value, window_length): returns = Returns(window_length=window_length) today = datetime64(1, 'ns') assets = arange(3) out = empty((3,), dtype=float) seed(seed_value) # Seed so we get deterministic results. test_data = abs(randn(window_length, 3)) # Calculate the expected returns expected = (test_data[-1] - test_data[0]) / test_data[0] out = empty((3,), dtype=float) returns.compute(today, assets, out, test_data) check_allclose(expected, out)
Example #9
Source File: rng.py From Jacinle with MIT License | 5 votes |
def gen_rng(seed=None): return JacRandomState(seed)
Example #10
Source File: iso_gan.py From ad_examples with MIT License | 5 votes |
def set_random_seeds(py_seed=42, np_seed=42, tf_seed=42): random.seed(py_seed) rnd.seed(np_seed) tf.set_random_seed(tf_seed)
Example #11
Source File: glad_support.py From ad_examples with MIT License | 5 votes |
def set_random_seeds(py_seed=42, np_seed=42, tf_seed=42): random.seed(py_seed) rnd.seed(np_seed) tf.set_random_seed(tf_seed)
Example #12
Source File: test_LogSoftMax.py From Kayak with MIT License | 5 votes |
def test_logsoftmax_values_1(): npr.seed(1) for ii in xrange(NUM_TRIALS): np_X = npr.randn(5,6) X = kayak.Parameter(np_X) Y = kayak.LogSoftMax(X) np_Y = np.exp(np_X) np_Y = np_Y / np.sum(np_Y, axis=1)[:,np.newaxis] np_Y = np.log(np_Y) assert Y.shape == np_X.shape assert np.all(close_float(Y.value, np_Y))
Example #13
Source File: test_LogSoftMax.py From Kayak with MIT License | 5 votes |
def test_logsoftmax_values_2(): npr.seed(2) for ii in xrange(NUM_TRIALS): np_X = npr.randn(5,6) X = kayak.Parameter(np_X) Y = kayak.LogSoftMax(X, axis=0) np_Y = np.exp(np_X) np_Y = np_Y / np.sum(np_Y, axis=0)[np.newaxis,:] np_Y = np.log(np_Y) assert Y.shape == np_X.shape assert np.all(close_float(Y.value, np_Y))
Example #14
Source File: rng.py From Jacinle with MIT License | 5 votes |
def reset_global_seed(seed=None, verbose=False): if seed is None: seed = gen_seed() for k, seed_getter in global_rng_registry.items(): if verbose: from jacinle.logging import get_logger logger = get_logger(__file__) logger.critical('Reset random seed for: {} (pid={}, seed={}).'.format(k, os.getpid(), seed)) seed_getter()(seed)
Example #15
Source File: rng.py From Jacinle with MIT License | 5 votes |
def _initialize_global_seed(): seed = os.getenv('JAC_RANDOM_SEED', None) if seed is not None: reset_global_seed(seed)
Example #16
Source File: test_LogSoftMax.py From Kayak with MIT License | 5 votes |
def test_logsoftmax_grad_1(): npr.seed(3) for ii in xrange(NUM_TRIALS): np_X = npr.randn(5,6) X = kayak.Parameter(np_X) Y = kayak.LogSoftMax(X) Z = kayak.MatSum(Y) assert kayak.util.checkgrad(X, Z) < MAX_GRAD_DIFF
Example #17
Source File: test_LogSoftMax.py From Kayak with MIT License | 5 votes |
def test_logsoftmax_grad_2(): npr.seed(4) for ii in xrange(NUM_TRIALS): np_X = npr.randn(5,6) X = kayak.Parameter(np_X) Y = kayak.LogSoftMax(X, axis=0) Z = kayak.MatSum(Y) assert kayak.util.checkgrad(X, Z) < MAX_GRAD_DIFF
Example #18
Source File: test_factor.py From catalyst with Apache License 2.0 | 5 votes |
def test_masked_rankdata_2d(self, seed_value, method, use_mask, set_missing, ascending): eyemask = ~eye(5, dtype=bool) nomask = ones((5, 5), dtype=bool) seed(seed_value) asfloat = (randn(5, 5) * seed_value) asdatetime = (asfloat).copy().view('datetime64[ns]') mask = eyemask if use_mask else nomask if set_missing: asfloat[:, 2] = nan asdatetime[:, 2] = NaTns float_result = masked_rankdata_2d( data=asfloat, mask=mask, missing_value=nan, method=method, ascending=True, ) datetime_result = masked_rankdata_2d( data=asdatetime, mask=mask, missing_value=NaTns, method=method, ascending=True, ) check_arrays(float_result, datetime_result)
Example #19
Source File: create.py From optnet with Apache License 2.0 | 5 votes |
def main(): parser = argparse.ArgumentParser() parser.add_argument('--minBps', type=int, default=1) parser.add_argument('--maxBps', type=int, default=10) parser.add_argument('--seqLen', type=int, default=100) parser.add_argument('--minHeight', type=int, default=10) parser.add_argument('--maxHeight', type=int, default=100) parser.add_argument('--noise', type=float, default=10) parser.add_argument('--nSamples', type=int, default=10000) parser.add_argument('--save', type=str, default='data/synthetic') args = parser.parse_args() npr.seed(0) save = args.save if os.path.isdir(save): shutil.rmtree(save) os.makedirs(save) X, Y = [], [] for i in range(args.nSamples): Xi, Yi = sample(args) X.append(Xi); Y.append(Yi) if i == 0: fig, ax = plt.subplots(1, 1) plt.plot(Xi, label='Corrupted') plt.plot(Yi, label='Original') plt.legend() f = os.path.join(args.save, "example.png") fig.savefig(f) print("Created {}".format(f)) X = np.array(X) Y = np.array(Y) for loc,arr in (('features.pt', X), ('labels.pt', Y)): fname = os.path.join(args.save, loc) with open(fname, 'wb') as f: torch.save(torch.Tensor(arr), f) print("Created {}".format(fname))
Example #20
Source File: gan.py From ad_examples with MIT License | 5 votes |
def set_random_seeds(py_seed=42, np_seed=42, tf_seed=42): random.seed(py_seed) rnd.seed(np_seed) tf.set_random_seed(tf_seed)
Example #21
Source File: test_dict_vectorizer.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_int_features_in_pipeline(self): import numpy.random as rn import pandas as pd rn.seed(0) x_train_dict = [ dict((rn.randint(100), 1) for i in range(20)) for j in range(100) ] y_train = [0, 1] * 50 from sklearn.pipeline import Pipeline from sklearn.feature_extraction import DictVectorizer from sklearn.linear_model import LogisticRegression pl = Pipeline([("dv", DictVectorizer()), ("lm", LogisticRegression())]) pl.fit(x_train_dict, y_train) import coremltools model = coremltools.converters.sklearn.convert( pl, input_features="features", output_feature_names="target" ) if _is_macos() and _macos_version() >= (10, 13): x = pd.DataFrame( {"features": x_train_dict, "prediction": pl.predict(x_train_dict)} ) cur_eval_metics = evaluate_classifier(model, x) self.assertEquals(cur_eval_metics["num_errors"], 0)
Example #22
Source File: test_imputer.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_conversion_boston(self): from sklearn.datasets import load_boston scikit_data = load_boston() sh = scikit_data.data.shape rn.seed(0) missing_value_indices = [ (rn.randint(sh[0]), rn.randint(sh[1])) for k in range(sh[0]) ] for strategy in ["mean", "median", "most_frequent"]: for missing_value in [0, "NaN", -999]: X = np.array(scikit_data.data).copy() for i, j in missing_value_indices: X[i, j] = missing_value model = Imputer(missing_values=missing_value, strategy=strategy) model = model.fit(X) tr_X = model.transform(X.copy()) spec = converter.convert(model, scikit_data.feature_names, "out") input_data = [dict(zip(scikit_data.feature_names, row)) for row in X] output_data = [{"out": row} for row in tr_X] result = evaluate_transformer(spec, input_data, output_data) assert result["num_errors"] == 0
Example #23
Source File: _test_utils.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _random_array( shape, random_seed=10 ): # type: (Tuple[int, ...], Any) -> np._ArrayLike[float] if random_seed: npr.seed(random_seed) # type: ignore return npr.ranf(shape).astype("float32")
Example #24
Source File: regression_base.py From imylu with Apache License 2.0 | 5 votes |
def fit(self, data: ndarray, label: ndarray, learning_rate: float, epochs: int, method="batch", sample_rate=1.0, random_state=None): """Train regression model. Arguments: data {ndarray} -- Training data. label {ndarray} -- Target values. learning_rate {float} -- Learning rate. epochs {int} -- Number of epochs to update the gradient. Keyword Arguments: method {str} -- "batch" or "stochastic" (default: {"batch"}) sample_rate {float} -- Between 0 and 1 (default: {1.0}) random_state {int} -- The seed used by the random number generator. (default: {None}) """ assert method in ("batch", "stochastic"), str(method) # Batch gradient descent. if method == "batch": self._batch_gradient_descent(data, label, learning_rate, epochs) # Stochastic gradient descent. if method == "stochastic": self._stochastic_gradient_descent( data, label, learning_rate, epochs, sample_rate, random_state)
Example #25
Source File: batch_utils.py From Neural-Chatbot with GNU General Public License v3.0 | 5 votes |
def __init__(self, questions, answers, vocabulary, batch_size, sequence_length, one_hot_target, stream=False): random.seed(0) self.sequence_length = sequence_length self.vocabulary = vocabulary self.batch_size = batch_size self.one_hot_target = one_hot_target self.stream = stream self.questions = questions self.answers = answers self.inverse_vocabulary = dict((word, i) for i, word in enumerate(self.vocabulary))
Example #26
Source File: test_token_swapper.py From qiskit-terra with Apache License 2.0 | 5 votes |
def setUp(self) -> None: """Set up test cases.""" random.seed(0)
Example #27
Source File: eval_iteration.py From pddm with Apache License 2.0 | 5 votes |
def main(): ############################# ## vars to specify for eval ############################# parser = argparse.ArgumentParser() parser.add_argument( '--job_path', type=str, default='../output/cheetah') #address this WRT working directory parser.add_argument('--iter_num', type=int, default=0) parser.add_argument('--num_eval_rollouts', type=int, default=3) parser.add_argument('--eval_run_length', type=int, default=-1) parser.add_argument('--gpu_frac', type=float, default=0.9) parser.add_argument('--use_ground_truth_dynamics', action="store_true") parser.add_argument('--execute_sideRollouts', action="store_true") parser.add_argument('--use_gpu', action="store_true") parser.add_argument('--seed', type=int, default=0) args = parser.parse_args() #directory to load from save_dir = os.path.abspath(args.job_path) assert os.path.isdir(save_dir) ########################## ## run evaluation ########################## try: run_eval(args, save_dir) except (KeyboardInterrupt, SystemExit): print('Terminating...') sys.exit(0) except Exception as e: print('ERROR: Exception occured while running a job....') traceback.print_exc()
Example #28
Source File: neuralnet.py From PySigmoid with MIT License | 5 votes |
def __init__(self): # Seed the random number generator, so it generates the same numbers # every time the program runs. random.seed(1) # We model a single neuron, with 3 input connections and 1 output connection. # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1 # and mean 0. self.synaptic_weights = 2 * random.random((3, 1)) - 1 self.synaptic_weights = posify(self.synaptic_weights) # The Sigmoid function, which describes an S shaped curve. # We pass the weighted sum of the inputs through this function to # normalise them between 0 and 1.
Example #29
Source File: argumenthandler.py From CAMISIM with Apache License 2.0 | 5 votes |
def _read_options(self, options): """ Read passed arguments. @rtype: None """ if not self._validator.validate_file(options.config_file, key='-c'): self._valid_arguments = False return self._file_path_config = self._validator.get_full_path(options.config_file) self._verbose = not options.silent self._debug = options.debug_mode self._phase = options.phase self._dataset_id = options.data_set_id self._max_processors = options.max_processors self._seed = options.seed # self._directory_output = options.output_directory # self._sample_size_in_base_pairs = options.sample_size_gbp # if self._sample_size_in_base_pairs is not None: # self._sample_size_in_base_pairs = long(options.sample_size_gbp * self._base_pairs_multiplication_factor) # self.read_simulator = options.read_simulator # self._error_profile = options.error_profile # self._fragment_size_standard_deviation_in_bp = options.fragment_size_standard_deviation # self._fragments_size_mean_in_bp = options.fragments_size_mean # self.plasmid_file = options.plasmid_file # self._number_of_samples = options.number_of_samples # self._phase_pooled_gsa = options.pooled_gsa
Example #30
Source File: test_matfuncs.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_matrix_power_operator(self): random.seed(1234) n = 5 k = 2 p = 3 nsamples = 10 for i in range(nsamples): A = np.random.randn(n, n) B = np.random.randn(n, k) op = MatrixPowerOperator(A, p) assert_allclose(op.matmat(B), matrix_power(A, p).dot(B)) assert_allclose(op.T.matmat(B), matrix_power(A, p).T.dot(B))