Python scipy.sparse.bsr_matrix() Examples
The following are 30
code examples of scipy.sparse.bsr_matrix().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.sparse
, or try the search function
.
Example #1
Source File: test_common.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_is_extension_type(): assert not com.is_extension_type([1, 2, 3]) assert not com.is_extension_type(np.array([1, 2, 3])) assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3])) cat = pd.Categorical([1, 2, 3]) assert com.is_extension_type(cat) assert com.is_extension_type(pd.Series(cat)) assert com.is_extension_type(pd.SparseArray([1, 2, 3])) assert com.is_extension_type(pd.SparseSeries([1, 2, 3])) assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) dtype = DatetimeTZDtype("ns", tz="US/Eastern") s = pd.Series([], dtype=dtype) assert com.is_extension_type(s) # This test will only skip if the previous assertions # pass AND scipy is not installed. sparse = pytest.importorskip("scipy.sparse") assert not com.is_extension_type(sparse.bsr_matrix([1, 2, 3]))
Example #2
Source File: test_common.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_is_extension_type(check_scipy): assert not com.is_extension_type([1, 2, 3]) assert not com.is_extension_type(np.array([1, 2, 3])) assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3])) cat = pd.Categorical([1, 2, 3]) assert com.is_extension_type(cat) assert com.is_extension_type(pd.Series(cat)) assert com.is_extension_type(pd.SparseArray([1, 2, 3])) assert com.is_extension_type(pd.SparseSeries([1, 2, 3])) assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) dtype = DatetimeTZDtype("ns", tz="US/Eastern") s = pd.Series([], dtype=dtype) assert com.is_extension_type(s) if check_scipy: import scipy.sparse assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #3
Source File: test_topi_sparse.py From incubator-tvm with Apache License 2.0 | 6 votes |
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype): import itertools Y = np.zeros((M, N), dtype=dtype) assert M % BS_R == 0 assert N % BS_C == 0 nnz = int(density * M * N) num_blocks = int(nnz / (BS_R * BS_C)) + 1 candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))) assert candidate_blocks.shape[0] == M // BS_R * N // BS_C chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)] for i in range(len(chosen_blocks)): r, c = chosen_blocks[i] Y[r:r + BS_R, c:c + BS_C] = np.random.randn(BS_R, BS_C) s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) assert s.data.shape == (num_blocks, BS_R, BS_C) assert s.indices.shape == (num_blocks, ) assert s.indptr.shape == (M // BS_R + 1, ) return s
Example #4
Source File: test_sparse_dense_convert.py From incubator-tvm with Apache License 2.0 | 6 votes |
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"): Y = np.zeros((M, N), dtype=dtype) assert M % BS_R == 0 assert N % BS_C == 0 nnz = int(density * M * N) num_blocks = int(nnz / (BS_R * BS_C)) + 1 candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))) assert candidate_blocks.shape[0] == M // BS_R * N // BS_C chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)] for i in range(len(chosen_blocks)): r, c = chosen_blocks[i] Y[r:r+BS_R,c:c+BS_C] = np.random.randn(BS_R, BS_C) s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) assert s.data.shape == (num_blocks, BS_R, BS_C) assert s.data.size >= nnz assert s.indices.shape == (num_blocks, ) assert s.indptr.shape == (M // BS_R + 1, ) return s
Example #5
Source File: deploy_sparse.py From incubator-tvm with Apache License 2.0 | 6 votes |
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"): Y = np.zeros((M, N), dtype=dtype) assert M % BS_R == 0 assert N % BS_C == 0 nnz = int(density * M * N) num_blocks = int(nnz / (BS_R * BS_C)) + 1 candidate_blocks = np.asarray( list(itertools.product(range(0, M, BS_R), range(0, N, BS_C))) ) assert candidate_blocks.shape[0] == M // BS_R * N // BS_C chosen_blocks = candidate_blocks[ np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False) ] for i in range(len(chosen_blocks)): r, c = chosen_blocks[i] Y[r : r + BS_R, c : c + BS_C] = np.random.uniform(-0.1, 0.1, (BS_R, BS_C)) s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) assert s.data.shape == (num_blocks, BS_R, BS_C) assert s.data.size >= nnz assert s.indices.shape == (num_blocks,) assert s.indptr.shape == (M // BS_R + 1,) return s.todense()
Example #6
Source File: test_common.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_is_extension_type(check_scipy): assert not com.is_extension_type([1, 2, 3]) assert not com.is_extension_type(np.array([1, 2, 3])) assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3])) cat = pd.Categorical([1, 2, 3]) assert com.is_extension_type(cat) assert com.is_extension_type(pd.Series(cat)) assert com.is_extension_type(pd.SparseArray([1, 2, 3])) assert com.is_extension_type(pd.SparseSeries([1, 2, 3])) assert com.is_extension_type(pd.DatetimeIndex(['2000'], tz="US/Eastern")) dtype = DatetimeTZDtype("ns", tz="US/Eastern") s = pd.Series([], dtype=dtype) assert com.is_extension_type(s) if check_scipy: import scipy.sparse assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #7
Source File: test_common.py From vnpy_crypto with MIT License | 6 votes |
def test_is_extension_type(check_scipy): assert not com.is_extension_type([1, 2, 3]) assert not com.is_extension_type(np.array([1, 2, 3])) assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3])) cat = pd.Categorical([1, 2, 3]) assert com.is_extension_type(cat) assert com.is_extension_type(pd.Series(cat)) assert com.is_extension_type(pd.SparseArray([1, 2, 3])) assert com.is_extension_type(pd.SparseSeries([1, 2, 3])) assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) dtype = DatetimeTZDtype("ns", tz="US/Eastern") s = pd.Series([], dtype=dtype) assert com.is_extension_type(s) if check_scipy: import scipy.sparse assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #8
Source File: test_common.py From recruit with Apache License 2.0 | 6 votes |
def test_is_extension_type(check_scipy): assert not com.is_extension_type([1, 2, 3]) assert not com.is_extension_type(np.array([1, 2, 3])) assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3])) cat = pd.Categorical([1, 2, 3]) assert com.is_extension_type(cat) assert com.is_extension_type(pd.Series(cat)) assert com.is_extension_type(pd.SparseArray([1, 2, 3])) assert com.is_extension_type(pd.SparseSeries([1, 2, 3])) assert com.is_extension_type(pd.DatetimeIndex(['2000'], tz="US/Eastern")) dtype = DatetimeTZDtype("ns", tz="US/Eastern") s = pd.Series([], dtype=dtype) assert com.is_extension_type(s) if check_scipy: import scipy.sparse assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #9
Source File: predict_seresnext-checkpoint.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction, flip = FLIP): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): if flip: mask = np.fliplr(prediction['masks'][:, :, i]) else: mask = prediction['masks'][:, :, i] prediction_sparse['masks'].append(sparse.bsr_matrix(mask)) return prediction_sparse
Example #10
Source File: test_common.py From recruit with Apache License 2.0 | 5 votes |
def test_is_scipy_sparse(): from scipy.sparse import bsr_matrix assert com.is_scipy_sparse(bsr_matrix([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
Example #11
Source File: test_common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_is_scipy_sparse(): from scipy.sparse import bsr_matrix assert com.is_scipy_sparse(bsr_matrix([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
Example #12
Source File: test_common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_is_sparse(check_scipy): assert com.is_sparse(pd.SparseArray([1, 2, 3])) assert com.is_sparse(pd.SparseSeries([1, 2, 3])) assert not com.is_sparse(np.array([1, 2, 3])) if check_scipy: import scipy.sparse assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #13
Source File: test_variance_threshold.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_zero_variance(): # Test VarianceThreshold with default setting, zero variance. for X in [data, csr_matrix(data), csc_matrix(data), bsr_matrix(data)]: sel = VarianceThreshold().fit(X) assert_array_equal([0, 1, 3, 4], sel.get_support(indices=True)) assert_raises(ValueError, VarianceThreshold().fit, [[0, 1, 2, 3]]) assert_raises(ValueError, VarianceThreshold().fit, [[0, 1], [0, 1]])
Example #14
Source File: test_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym)
Example #15
Source File: test_common.py From vnpy_crypto with MIT License | 5 votes |
def test_is_sparse(check_scipy): assert com.is_sparse(pd.SparseArray([1, 2, 3])) assert com.is_sparse(pd.SparseSeries([1, 2, 3])) assert not com.is_sparse(np.array([1, 2, 3])) if check_scipy: import scipy.sparse assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #16
Source File: sparse_dense.py From incubator-tvm with Apache License 2.0 | 5 votes |
def process_params(expr, params, block_size, sparsity_threshold): """[summary] Parameters ---------- expr : Relay.Expr Expr of the network params : Dict[String, tvm.nd.array] parameters of the network block_size : Tuple(int, int) Blocksize in BSR matrix sparsity_threshold : float Minimal sparsity requirement for converting to sparse operation Returns ------- ret : Namedtuple[weight_name: Array[String], weight_shape: Array[Array[IntImm]]] return names of qualified dense weight and the shape in BSR format """ memo = SparseAnalysisResult(weight_name=[], weight_shape=[]) weight_names = _search_dense_op_weight(expr) for name in weight_names: name = str(name) w_np = params[name].asnumpy() sparsity = 1.0 - (np.count_nonzero(w_np) / w_np.size) if sparsity >= sparsity_threshold: sparse_weight = sp.bsr_matrix(w_np, blocksize=block_size) # remove dense weight del params[name] memo.weight_name.append(name) memo.weight_shape.append(list(sparse_weight.data.shape) + list(sparse_weight.indices.shape) + list(sparse_weight.indptr.shape)) params[name + ".data"] = tvm.nd.array(sparse_weight.data) params[name + ".indices"] = tvm.nd.array(sparse_weight.indices) params[name + ".indptr"] = tvm.nd.array(sparse_weight.indptr) ret = SparseAnalysisResult( weight_name=tvm.runtime.convert(memo.weight_name), weight_shape=tvm.runtime.convert(memo.weight_shape) ) return ret
Example #17
Source File: test_common.py From vnpy_crypto with MIT License | 5 votes |
def test_is_scipy_sparse(): from scipy.sparse import bsr_matrix assert com.is_scipy_sparse(bsr_matrix([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
Example #18
Source File: predict.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): prediction_sparse['masks'].append(sparse.bsr_matrix(prediction['masks'][:, :, i])) return prediction_sparse
Example #19
Source File: predict-checkpoint.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): prediction_sparse['masks'].append(sparse.bsr_matrix(prediction['masks'][:, :, i])) return prediction_sparse
Example #20
Source File: predict_resnet.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction, flip = FLIP): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): if flip: mask = np.fliplr(prediction['masks'][:, :, i]) else: mask = prediction['masks'][:, :, i] prediction_sparse['masks'].append(sparse.bsr_matrix(mask)) return prediction_sparse
Example #21
Source File: predict_resnet-checkpoint.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction, flip = FLIP): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): if flip: mask = np.fliplr(prediction['masks'][:, :, i]) else: mask = prediction['masks'][:, :, i] prediction_sparse['masks'].append(sparse.bsr_matrix(mask)) return prediction_sparse
Example #22
Source File: predict_resnet_v2-checkpoint.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction, flip = FLIP): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): if flip: mask = np.fliplr(prediction['masks'][:, :, i]) else: mask = prediction['masks'][:, :, i] prediction_sparse['masks'].append(sparse.bsr_matrix(mask)) return prediction_sparse
Example #23
Source File: test_spfuncs.py From Computable with MIT License | 5 votes |
def test_scale_rows_and_cols(self): D = matrix([[1,0,0,2,3], [0,4,0,5,0], [0,0,6,7,0]]) #TODO expose through function S = csr_matrix(D) v = array([1,2,3]) csr_scale_rows(3,5,S.indptr,S.indices,S.data,v) assert_equal(S.todense(), diag(v)*D) S = csr_matrix(D) v = array([1,2,3,4,5]) csr_scale_columns(3,5,S.indptr,S.indices,S.data,v) assert_equal(S.todense(), D*diag(v)) # blocks E = kron(D,[[1,2],[3,4]]) S = bsr_matrix(E,blocksize=(2,2)) v = array([1,2,3,4,5,6]) bsr_scale_rows(3,5,2,2,S.indptr,S.indices,S.data,v) assert_equal(S.todense(), diag(v)*E) S = bsr_matrix(E,blocksize=(2,2)) v = array([1,2,3,4,5,6,7,8,9,10]) bsr_scale_columns(3,5,2,2,S.indptr,S.indices,S.data,v) assert_equal(S.todense(), E*diag(v)) E = kron(D,[[1,2,3],[4,5,6]]) S = bsr_matrix(E,blocksize=(2,3)) v = array([1,2,3,4,5,6]) bsr_scale_rows(3,5,2,3,S.indptr,S.indices,S.data,v) assert_equal(S.todense(), diag(v)*E) S = bsr_matrix(E,blocksize=(2,3)) v = array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) bsr_scale_columns(3,5,2,3,S.indptr,S.indices,S.data,v) assert_equal(S.todense(), E*diag(v))
Example #24
Source File: predict_seresnext.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def prediction_to_sparse(prediction, flip = FLIP): prediction_sparse = dict() prediction_sparse['rois'] = prediction['rois'] prediction_sparse['class_ids'] = prediction['class_ids'] prediction_sparse['scores'] = prediction['scores'] prediction_sparse['masks'] = [] for i in range(len(prediction['scores'])): if flip: mask = np.fliplr(prediction['masks'][:, :, i]) else: mask = prediction['masks'][:, :, i] prediction_sparse['masks'].append(sparse.bsr_matrix(mask)) return prediction_sparse
Example #25
Source File: Recommender_utils.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 5 votes |
def check_matrix(X, format='csc', dtype=np.float32): """ This function takes a matrix as input and transforms it into the specified format. The matrix in input can be either sparse or ndarray. If the matrix in input has already the desired format, it is returned as-is the dtype parameter is always applied and the default is np.float32 :param X: :param format: :param dtype: :return: """ if format == 'csc' and not isinstance(X, sps.csc_matrix): return X.tocsc().astype(dtype) elif format == 'csr' and not isinstance(X, sps.csr_matrix): return X.tocsr().astype(dtype) elif format == 'coo' and not isinstance(X, sps.coo_matrix): return X.tocoo().astype(dtype) elif format == 'dok' and not isinstance(X, sps.dok_matrix): return X.todok().astype(dtype) elif format == 'bsr' and not isinstance(X, sps.bsr_matrix): return X.tobsr().astype(dtype) elif format == 'dia' and not isinstance(X, sps.dia_matrix): return X.todia().astype(dtype) elif format == 'lil' and not isinstance(X, sps.lil_matrix): return X.tolil().astype(dtype) elif format == 'npy': if sps.issparse(X): return X.toarray().astype(dtype) else: return np.array(X) elif isinstance(X, np.ndarray): X = sps.csr_matrix(X, dtype=dtype) X.eliminate_zeros() return check_matrix(X, format=format, dtype=dtype) else: return X.astype(dtype)
Example #26
Source File: test_common.py From recruit with Apache License 2.0 | 5 votes |
def test_is_sparse(check_scipy): assert com.is_sparse(pd.SparseArray([1, 2, 3])) assert com.is_sparse(pd.SparseSeries([1, 2, 3])) assert not com.is_sparse(np.array([1, 2, 3])) if check_scipy: import scipy.sparse assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))
Example #27
Source File: test_common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_is_scipy_sparse(): tm._skip_if_no_scipy() from scipy.sparse import bsr_matrix assert com.is_scipy_sparse(bsr_matrix([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3])) assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
Example #28
Source File: test_common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_is_sparse(): assert com.is_sparse(pd.SparseArray([1, 2, 3])) assert com.is_sparse(pd.SparseSeries([1, 2, 3])) assert not com.is_sparse(np.array([1, 2, 3])) # This test will only skip if the previous assertions # pass AND scipy is not installed. sparse = pytest.importorskip("scipy.sparse") assert not com.is_sparse(sparse.bsr_matrix([1, 2, 3]))
Example #29
Source File: test_validation.py From megaman with BSD 2-Clause "Simplified" License | 5 votes |
def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym)
Example #30
Source File: api.py From pyculib with BSD 2-Clause "Simplified" License | 5 votes |
def bsr_matrix(*args, **kws): """Takes the same arguments as ``scipy.sparse.bsr_matrix``. Returns a BSR CUDA matrix. """ mat = ss.bsr_matrix(*args, **kws) return CudaBSRMatrix().from_host_matrix(mat)