Python numpy.ScalarType() Examples

The following are 30 code examples of numpy.ScalarType(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: test_classes.py    From mxnet-lambda with Apache License 2.0 6 votes vote down vote up
def check_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #2
Source File: test_classes.py    From keras-lambda with MIT License 6 votes vote down vote up
def check_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #3
Source File: test_classes.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #4
Source File: test_classes.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #5
Source File: test_classes.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #6
Source File: test_classes.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def check_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #7
Source File: tensor_board_output.py    From dowel with MIT License 6 votes vote down vote up
def _record_tabular(self, data, step):
        if self._x_axis:
            nonexist_axes = []
            for axis in [self._x_axis] + self._additional_x_axes:
                if axis not in data.as_dict:
                    nonexist_axes.append(axis)
            if nonexist_axes:
                self._warn('{} {} exist in the tabular data.'.format(
                    ', '.join(nonexist_axes),
                    'do not' if len(nonexist_axes) > 1 else 'does not'))

        for key, value in data.as_dict.items():
            if isinstance(value,
                          np.ScalarType) and self._x_axis in data.as_dict:
                if self._x_axis is not key:
                    x = data.as_dict[self._x_axis]
                    self._record_kv(key, value, x)

                for axis in self._additional_x_axes:
                    if key is not axis and key in data.as_dict:
                        x = data.as_dict[axis]
                        self._record_kv('{}/{}'.format(key, axis), value, x)
            else:
                self._record_kv(key, value, step)
            data.mark(key) 
Example #8
Source File: test_classes.py    From ImageFusion with MIT License 6 votes vote down vote up
def check_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #9
Source File: test_classes.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #10
Source File: test_classes.py    From pySINDy with MIT License 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #11
Source File: test_classes.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #12
Source File: test_classes.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def check_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #13
Source File: test_classes.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def check_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #14
Source File: test_distributions.py    From Computable with MIT License 6 votes vote down vote up
def test_rvs(self):
        vals = stats.randint.rvs(5,30,size=100)
        assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
        assert_(len(vals) == 100)
        vals = stats.randint.rvs(5,30,size=(2,50))
        assert_(numpy.shape(vals) == (2,50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.randint.rvs(15,46)
        assert_((val >= 15) & (val < 46))
        assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
        val = stats.randint(15,46).rvs(3)
        assert_(val.dtype.char in typecodes['AllInteger']) 
Example #15
Source File: test_classes.py    From GraphicDesignPatternByPython with MIT License 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #16
Source File: test_classes.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, long, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1)) 
Example #17
Source File: test_distributions.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def test_rvs(self):
        vals = stats.randint.rvs(5, 30, size=100)
        assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
        assert_(len(vals) == 100)
        vals = stats.randint.rvs(5, 30, size=(2, 50))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.randint.rvs(15, 46)
        assert_((val >= 15) & (val < 46))
        assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
        val = stats.randint(15, 46).rvs(3)
        assert_(val.dtype.char in typecodes['AllInteger']) 
Example #18
Source File: tensor_board_output.py    From malib with MIT License 5 votes vote down vote up
def _record_kv(self, key, value, step):
        if isinstance(value, np.ScalarType):
            self._writer.add_scalar(key, value, step)
        elif isinstance(value, plt.Figure):
            self._writer.add_figure(key, value, step)
        elif isinstance(value, scipy.stats._distn_infrastructure.rv_frozen):
            shape = (self._histogram_samples,) + value.mean().shape
            self._writer.add_histogram(key, value.rvs(shape), step)
        elif isinstance(value, scipy.stats._multivariate.multi_rv_frozen):
            self._writer.add_histogram(key, value.rvs(self._histogram_samples), step)
        elif isinstance(value, Histogram):
            self._writer.add_histogram(key, value, step) 
Example #19
Source File: tensor_board_output.py    From dowel with MIT License 5 votes vote down vote up
def _record_kv(self, key, value, step):
        if isinstance(value, np.ScalarType):
            self._writer.add_scalar(key, value, step)
        elif isinstance(value, plt.Figure):
            self._writer.add_figure(key, value, step)
        elif isinstance(value, scipy.stats._distn_infrastructure.rv_frozen):
            shape = (self._histogram_samples, ) + value.mean().shape
            self._writer.add_histogram(key, value.rvs(shape), step)
        elif isinstance(value, scipy.stats._multivariate.multi_rv_frozen):
            self._writer.add_histogram(key, value.rvs(self._histogram_samples),
                                       step)
        elif isinstance(value, Histogram):
            self._writer.add_histogram(key, value, step) 
Example #20
Source File: test_fallback.py    From cupy with MIT License 5 votes vote down vote up
def numpy_fallback_array_equal(name='xp'):
    """
    Decorator that checks fallback_mode results are equal to NumPy ones.
    Checks ndarrays.

    Args:
        name(str): Argument name whose value is either
        ``numpy`` or ``cupy`` module.
    """
    def decorator(impl):
        @functools.wraps(impl)
        def test_func(self, *args, **kwargs):

            kwargs[name] = fallback_mode.numpy
            fallback_result = impl(self, *args, **kwargs)

            kwargs[name] = numpy
            numpy_result = impl(self, *args, **kwargs)

            if isinstance(numpy_result, numpy.ndarray):
                # if numpy returns ndarray, cupy must return ndarray
                assert isinstance(fallback_result, fallback.ndarray)

                fallback_mode.numpy.testing.assert_array_equal(
                    numpy_result, fallback_result)

                assert fallback_result.dtype == numpy_result.dtype

            elif isinstance(numpy_result, numpy.ScalarType):
                # if numpy returns scalar
                # cupy may return 0-dim array
                assert numpy_result == fallback_result._cupy_array.item() or \
                    (numpy_result == fallback_result._numpy_array).all()

            else:
                assert False

        return test_func
    return decorator 
Example #21
Source File: elementwise.py    From deeppy with MIT License 5 votes vote down vote up
def __call__(self, lhs, rhs):
        if lhs is rhs:
            return 2*lhs
        if isinstance(lhs, np.ScalarType) and lhs == 0:
            return rhs
        if isinstance(rhs, np.ScalarType) and rhs == 0:
            return lhs
        return super(Add, self).__call__(lhs, rhs) 
Example #22
Source File: elementwise.py    From deeppy with MIT License 5 votes vote down vote up
def __call__(self, lhs, rhs):
        if lhs is rhs:
            return 0.0
        if isinstance(lhs, np.ScalarType) and lhs == 0:
            return -rhs
        if isinstance(rhs, np.ScalarType) and rhs == 0:
            return lhs
        return super(Subtract, self).__call__(lhs, rhs) 
Example #23
Source File: elementwise.py    From deeppy with MIT License 5 votes vote down vote up
def __call__(self, lhs, rhs):
        if lhs is rhs:
            return lhs**2
        if isinstance(lhs, np.ScalarType) and lhs == 1:
            return rhs
        if isinstance(rhs, np.ScalarType) and rhs == 1:
            return lhs
        return super(Multiply, self).__call__(lhs, rhs) 
Example #24
Source File: elementwise.py    From deeppy with MIT License 5 votes vote down vote up
def __call__(self, lhs, rhs):
        if lhs is rhs:
            return 1.0
        if isinstance(rhs, np.ScalarType) and rhs == 1:
            return lhs
        return super(Divide, self).__call__(lhs, rhs) 
Example #25
Source File: extras.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def __getitem__(self, key):
        if isinstance(key, str):
            raise MAError("Unavailable for masked array.")
        if not isinstance(key, tuple):
            key = (key,)
        objs = []
        scalars = []
        final_dtypedescr = None
        for k in range(len(key)):
            scalar = False
            if isinstance(key[k], slice):
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = np.linspace(start, stop, num=size)
                else:
                    newobj = np.arange(start, stop, step)
            elif isinstance(key[k], str):
                if (key[k] in 'rc'):
                    self.matrix = True
                    self.col = (key[k] == 'c')
                    continue
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("Unknown special directive")
            elif type(key[k]) in np.ScalarType:
                newobj = asarray([key[k]])
                scalars.append(k)
                scalar = True
            else:
                newobj = key[k]
            objs.append(newobj)
            if isinstance(newobj, ndarray) and not scalar:
                if final_dtypedescr is None:
                    final_dtypedescr = newobj.dtype
                elif newobj.dtype > final_dtypedescr:
                    final_dtypedescr = newobj.dtype
        if final_dtypedescr is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtypedescr)
        res = concatenate(tuple(objs), axis=self.axis)
        return self._retval(res) 
Example #26
Source File: extras.py    From lambda-packs with MIT License 4 votes vote down vote up
def __getitem__(self, key):
        if isinstance(key, str):
            raise MAError("Unavailable for masked array.")
        if not isinstance(key, tuple):
            key = (key,)
        objs = []
        scalars = []
        final_dtypedescr = None
        for k in range(len(key)):
            scalar = False
            if isinstance(key[k], slice):
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = np.linspace(start, stop, num=size)
                else:
                    newobj = np.arange(start, stop, step)
            elif isinstance(key[k], str):
                if (key[k] in 'rc'):
                    self.matrix = True
                    self.col = (key[k] == 'c')
                    continue
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("Unknown special directive")
            elif type(key[k]) in np.ScalarType:
                newobj = asarray([key[k]])
                scalars.append(k)
                scalar = True
            else:
                newobj = key[k]
            objs.append(newobj)
            if isinstance(newobj, ndarray) and not scalar:
                if final_dtypedescr is None:
                    final_dtypedescr = newobj.dtype
                elif newobj.dtype > final_dtypedescr:
                    final_dtypedescr = newobj.dtype
        if final_dtypedescr is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtypedescr)
        res = concatenate(tuple(objs), axis=self.axis)
        return self._retval(res) 
Example #27
Source File: extras.py    From keras-lambda with MIT License 4 votes vote down vote up
def __getitem__(self, key):
        if isinstance(key, str):
            raise MAError("Unavailable for masked array.")
        if not isinstance(key, tuple):
            key = (key,)
        objs = []
        scalars = []
        final_dtypedescr = None
        for k in range(len(key)):
            scalar = False
            if isinstance(key[k], slice):
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = np.linspace(start, stop, num=size)
                else:
                    newobj = np.arange(start, stop, step)
            elif isinstance(key[k], str):
                if (key[k] in 'rc'):
                    self.matrix = True
                    self.col = (key[k] == 'c')
                    continue
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("Unknown special directive")
            elif type(key[k]) in np.ScalarType:
                newobj = asarray([key[k]])
                scalars.append(k)
                scalar = True
            else:
                newobj = key[k]
            objs.append(newobj)
            if isinstance(newobj, ndarray) and not scalar:
                if final_dtypedescr is None:
                    final_dtypedescr = newobj.dtype
                elif newobj.dtype > final_dtypedescr:
                    final_dtypedescr = newobj.dtype
        if final_dtypedescr is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtypedescr)
        res = concatenate(tuple(objs), axis=self.axis)
        return self._retval(res) 
Example #28
Source File: extras.py    From Computable with MIT License 4 votes vote down vote up
def __getitem__(self, key):
        if isinstance(key, str):
            raise MAError("Unavailable for masked array.")
        if not isinstance(key, tuple):
            key = (key,)
        objs = []
        scalars = []
        final_dtypedescr = None
        for k in range(len(key)):
            scalar = False
            if isinstance(key[k], slice):
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = np.linspace(start, stop, num=size)
                else:
                    newobj = np.arange(start, stop, step)
            elif isinstance(key[k], str):
                if (key[k] in 'rc'):
                    self.matrix = True
                    self.col = (key[k] == 'c')
                    continue
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("Unknown special directive")
            elif type(key[k]) in np.ScalarType:
                newobj = asarray([key[k]])
                scalars.append(k)
                scalar = True
            else:
                newobj = key[k]
            objs.append(newobj)
            if isinstance(newobj, ndarray) and not scalar:
                if final_dtypedescr is None:
                    final_dtypedescr = newobj.dtype
                elif newobj.dtype > final_dtypedescr:
                    final_dtypedescr = newobj.dtype
        if final_dtypedescr is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtypedescr)
        res = concatenate(tuple(objs), axis=self.axis)
        return self._retval(res) 
Example #29
Source File: extras.py    From ImageFusion with MIT License 4 votes vote down vote up
def __getitem__(self, key):
        if isinstance(key, str):
            raise MAError("Unavailable for masked array.")
        if not isinstance(key, tuple):
            key = (key,)
        objs = []
        scalars = []
        final_dtypedescr = None
        for k in range(len(key)):
            scalar = False
            if isinstance(key[k], slice):
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None:
                    start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = np.linspace(start, stop, num=size)
                else:
                    newobj = np.arange(start, stop, step)
            elif isinstance(key[k], str):
                if (key[k] in 'rc'):
                    self.matrix = True
                    self.col = (key[k] == 'c')
                    continue
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("Unknown special directive")
            elif type(key[k]) in np.ScalarType:
                newobj = asarray([key[k]])
                scalars.append(k)
                scalar = True
            else:
                newobj = key[k]
            objs.append(newobj)
            if isinstance(newobj, ndarray) and not scalar:
                if final_dtypedescr is None:
                    final_dtypedescr = newobj.dtype
                elif newobj.dtype > final_dtypedescr:
                    final_dtypedescr = newobj.dtype
        if final_dtypedescr is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtypedescr)
        res = concatenate(tuple(objs), axis=self.axis)
        return self._retval(res) 
Example #30
Source File: generate.py    From cupy with MIT License 4 votes vote down vote up
def __getitem__(self, key):
        trans1d = self.trans1d
        ndmin = self.ndmin
        objs = []
        scalars = []
        arraytypes = []
        scalartypes = []
        if isinstance(key, str):
            raise NotImplementedError
        if not isinstance(key, tuple):
            key = (key,)

        for i, k in enumerate(key):
            scalar = False
            if isinstance(k, slice):
                raise NotImplementedError
            elif isinstance(k, str):
                if i != 0:
                    raise ValueError(
                        'special directives must be the first entry.')
                raise NotImplementedError
            elif type(k) in numpy.ScalarType:
                newobj = from_data.array(k, ndmin=ndmin)
                scalars.append(i)
                scalar = True
                scalartypes.append(newobj.dtype)
            else:
                newobj = from_data.array(k, copy=False, ndmin=ndmin)
                if ndmin > 1:
                    ndim = from_data.array(k, copy=False).ndim
                    if trans1d != -1 and ndim < ndmin:
                        newobj = self._output_obj(newobj, ndim, ndmin, trans1d)

            objs.append(newobj)
            if not scalar and isinstance(newobj, core.ndarray):
                arraytypes.append(newobj.dtype)

        final_dtype = numpy.find_common_type(arraytypes, scalartypes)
        if final_dtype is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtype)

        return join.concatenate(tuple(objs), axis=self.axis)