Python numpy.ma.MaskedArray() Examples
The following are 30
code examples of numpy.ma.MaskedArray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.ma
, or try the search function
.
Example #1
Source File: transforms.py From matplotlib-4-abaqus with MIT License | 6 votes |
def transform_non_affine(self, points): if self._x.is_affine and self._y.is_affine: return points x = self._x y = self._y if x == y and x.input_dims == 2: return x.transform_non_affine(points) if x.input_dims == 2: x_points = x.transform_non_affine(points)[:, 0:1] else: x_points = x.transform_non_affine(points[:, 0]) x_points = x_points.reshape((len(x_points), 1)) if y.input_dims == 2: y_points = y.transform_non_affine(points)[:, 1:] else: y_points = y.transform_non_affine(points[:, 1]) y_points = y_points.reshape((len(y_points), 1)) if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray): return ma.concatenate((x_points, y_points), 1) else: return np.concatenate((x_points, y_points), 1)
Example #2
Source File: masks.py From argos with GNU General Public License v3.0 | 6 votes |
def fillValuesToNan(masked_array): """ Replaces the fill_values of the masked array by NaNs If the array is None or it does not contain floating point values, it cannot contain NaNs. In that case the original array is returned. """ if masked_array is not None and masked_array.dtype.kind == 'f': check_class(masked_array, ma.masked_array) logger.debug("Replacing fill_values by NaNs") masked_array[:] = ma.filled(masked_array, np.nan) masked_array.set_fill_value(np.nan) else: return masked_array #TODO: does recordMask help here? # https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray.recordmask
Example #3
Source File: mstats_extras.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def hdmedian(data, axis=-1, var=False): """ Returns the Harrell-Davis estimate of the median along the given axis. Parameters ---------- data : ndarray Data array. axis : int, optional Axis along which to compute the quantiles. If None, use a flattened array. var : bool, optional Whether to return the variance of the estimate. Returns ------- hdmedian : MaskedArray The median values. If ``var=True``, the variance is returned inside the masked array. E.g. for a 1-D array the shape change from (1,) to (2,). """ result = hdquantiles(data,[0.5], axis=axis, var=var) return result.squeeze()
Example #4
Source File: masks.py From argos with GNU General Public License v3.0 | 6 votes |
def createFromMaskedArray(cls, masked_arr): """ Creates an ArrayWithMak :param masked_arr: a numpy MaskedArray or numpy array :return: ArrayWithMask """ if isinstance(masked_arr, ArrayWithMask): return masked_arr check_class(masked_arr, (np.ndarray, ma.MaskedArray)) # A MaskedConstant (i.e. masked) is a special case of MaskedArray. It does not seem to have # a fill_value so we use None to use the default. # https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.masked fill_value = getattr(masked_arr, 'fill_value', None) return cls(masked_arr.data, masked_arr.mask, fill_value)
Example #5
Source File: test_mstats_basic.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_1D(self): a = (1,2,3,4) actual = mstats.gmean(a) desired = np.power(1*2*3*4,1./4.) assert_almost_equal(actual, desired, decimal=14) desired1 = mstats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) assert_(not isinstance(desired1, ma.MaskedArray)) a = ma.array((1,2,3,4),mask=(0,0,0,1)) actual = mstats.gmean(a) desired = np.power(1*2*3,1./3.) assert_almost_equal(actual, desired,decimal=14) desired1 = mstats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14)
Example #6
Source File: nsview.py From spyder-kernels with MIT License | 6 votes |
def get_size(item): """Return size of an item of arbitrary type""" if isinstance(item, (list, set, tuple, dict)): return len(item) elif isinstance(item, (ndarray, MaskedArray)): return item.shape elif isinstance(item, Image): return item.size if isinstance(item, (DataFrame, Index, Series)): try: return item.shape except RecursionError: # This is necessary to avoid an error when trying to # get the shape of these objects. # Fixes spyder-ide/spyder-kernels#217 return (-1, -1) else: return 1
Example #7
Source File: nsview.py From spyder-kernels with MIT License | 6 votes |
def get_human_readable_type(item): """Return human-readable type string of an item""" if isinstance(item, (ndarray, MaskedArray)): return u'Array of ' + item.dtype.name elif isinstance(item, Image): return "Image" else: text = get_type_string(item) if text is None: text = to_text_string('Unknown') else: return text[text.find('.')+1:] #============================================================================== # Globals filter: filter namespace dictionaries (to be edited in # CollectionsEditor) #==============================================================================
Example #8
Source File: transforms.py From Computable with MIT License | 6 votes |
def transform_non_affine(self, points): if self._x.is_affine and self._y.is_affine: return points x = self._x y = self._y if x == y and x.input_dims == 2: return x.transform_non_affine(points) if x.input_dims == 2: x_points = x.transform_non_affine(points)[:, 0:1] else: x_points = x.transform_non_affine(points[:, 0]) x_points = x_points.reshape((len(x_points), 1)) if y.input_dims == 2: y_points = y.transform_non_affine(points)[:, 1:] else: y_points = y.transform_non_affine(points[:, 1]) y_points = y_points.reshape((len(y_points), 1)) if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray): return ma.concatenate((x_points, y_points), 1) else: return np.concatenate((x_points, y_points), 1)
Example #9
Source File: scale.py From neural-network-animation with MIT License | 6 votes |
def transform_non_affine(self, a): a = self._handle_nonpos(a * self.base) if isinstance(a, ma.MaskedArray): return ma.log(a) / np.log(self.base) return np.log(a) / np.log(self.base)
Example #10
Source File: transforms.py From neural-network-animation with MIT License | 6 votes |
def transform_non_affine(self, points): if self._x.is_affine and self._y.is_affine: return points x = self._x y = self._y if x == y and x.input_dims == 2: return x.transform_non_affine(points) if x.input_dims == 2: x_points = x.transform_non_affine(points)[:, 0:1] else: x_points = x.transform_non_affine(points[:, 0]) x_points = x_points.reshape((len(x_points), 1)) if y.input_dims == 2: y_points = y.transform_non_affine(points)[:, 1:] else: y_points = y.transform_non_affine(points[:, 1]) y_points = y_points.reshape((len(y_points), 1)) if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray): return ma.concatenate((x_points, y_points), 1) else: return np.concatenate((x_points, y_points), 1)
Example #11
Source File: datatypes.py From pixelworld with MIT License | 6 votes |
def view_field(self, name, type=None): """construct a view of one data field Parameters ---------- name : string the name of the field type : type, optional the type of the returned array Returns ------- view : MaskedArray a view of the specified field """ view = self.data[name] if type is not None: return view.view(type=type) else: return view
Example #12
Source File: test_mrecords.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_view_simple_dtype(self): (mrec, a, b, arr) = self.data ntype = (float, 2) test = mrec.view(ntype) assert_(isinstance(test, ma.MaskedArray)) assert_equal(test, np.array(list(zip(a, b)), dtype=float)) assert_(test[3, 1] is ma.masked)
Example #13
Source File: test_recfunctions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_join_subdtype(self): # tests the bug in https://stackoverflow.com/q/44769632/102441 from numpy.lib import recfunctions as rfn foo = np.array([(1,)], dtype=[('key', int)]) bar = np.array([(1, np.array([1,2,3]))], dtype=[('key', int), ('value', 'uint16', 3)]) res = join_by('key', foo, bar) assert_equal(res, bar.view(ma.MaskedArray))
Example #14
Source File: recfunctions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output
Example #15
Source File: recfunctions.py From pySINDy with MIT License | 5 votes |
def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output
Example #16
Source File: dc2_matched_table.py From gcr-catalogs with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _get_star_array(q, is_star, is_matched): mask = _get_star_mask(is_star, is_matched) return ma.MaskedArray(q, mask=mask)
Example #17
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): a = self._handle_nonpos(a * 2.0) if isinstance(a, ma.MaskedArray): return ma.log(a) / np.log(2) return np.log2(a)
Example #18
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): a = self._handle_nonpos(a * 10.0) if isinstance(a, ma.MaskedArray): return ma.log10(a) return np.log10(a)
Example #19
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def _mask_non_positives(a): """ Return a Numpy masked array where all non-positive values are masked. If there are no non-positive values, the original array is returned. """ mask = a <= 0.0 if mask.any(): return ma.MaskedArray(a, mask=mask) return a
Example #20
Source File: dc2_matched_table.py From gcr-catalogs with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _generate_quantity_modifiers(self): # modify native quantities quantity_modifiers = { 'galaxy_match_mask': (_get_galaxy_mask, self._is_star, self._match_flag), 'star_match_mask': (_get_star_mask, self._is_star, self._match_flag), 'redshift_true_galaxy': (_get_galaxy_array, 'redshift_true', self._is_star, self._match_flag), } modified_quantity_list = [c for c in self._column_names if self._is_star not in c and self._match_flag not in c and 'redshift' not in c] for q in modified_quantity_list: #self._quantity_modifiers[q + '_galaxy'] = (lambda x: ma.MaskedArray(x, mask=self._galaxy_match_mask), q) #self._quantity_modifiers[q + '_star'] = (lambda x: ma.MaskedArray(x, mask=self._star_match_mask), q) quantity_modifiers[q + '_galaxy'] = (_get_galaxy_array, q, self._is_star, self._match_flag) quantity_modifiers[q + '_star'] = (_get_star_array, q, self._is_star, self._match_flag) return quantity_modifiers
Example #21
Source File: transforms.py From neural-network-animation with MIT License | 5 votes |
def transform_affine(self, points): mtx = self.get_matrix() if isinstance(points, MaskedArray): tpoints = affine_transform(points.data, mtx) return ma.MaskedArray(tpoints, mask=ma.getmask(points)) return affine_transform(points, mtx)
Example #22
Source File: datatypes.py From pixelworld with MIT License | 5 votes |
def _set_data(self, data): """set the data array Parameters ---------- data : MaskedArray the new data array """ if isinstance(data, ma.MaskedArray) and not isinstance(data, SerializableMaskedArray): self._data = SerializableMaskedArray(data) elif isinstance(data, SerializableMaskedArray): self._data = data else: assert False, 'unknown data type' #set the fill value of each field for field in self.fields: #this fails with multi-dimensional fields, in which case we do it #the wonky way below try: self._data[field].set_fill_value(self._null_values[field]) except TypeError: self._data._fill_value[field] = self._null_values[field] #process the change to the data array self._process_data_change()
Example #23
Source File: rdt.py From forest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def update_json(props, varname, data, datatype): """ Adds an extra field to the properties of a feature in a geojson file. Provides a consistent way to handle different data types :param props: dictionary of properties :param varname: string variable name :param data: the data to add :param datatype: datatype :return: updated props """ if isinstance(data, ma.MaskedArray) and (data.shape == ()) and ('int' in str(datatype)): props.update({varname: np.int(ma.getdata(data))}) elif isinstance(data, ma.MaskedArray) and (data.shape == ()) and ('float' in str(datatype)): props.update({varname: np.float(ma.getdata(data))}) elif isinstance(data, np.float32) or isinstance(data, np.float): props.update({varname: float(data)}) elif isinstance(data, np.int) or isinstance(data, np.uint16): props.update({varname: int(data)}) elif str(datatype) == 'string': props.update({varname: str(data)}) else: return
Example #24
Source File: utils.py From pixelworld with MIT License | 5 votes |
def ind2sub(shape, idx): """like MATLAB's ind2sub: decode linear index values into multiple-subscript indices Parameters ---------- shape : tuple the shape of the array idx : ndarray a linear index array, like that returned by sub2ind Returns ------- *sub_indices the multiple-subscript index arrays encoded by idx """ if isinstance(idx, ma.MaskedArray): idx = idx.data ndim = len(shape) #initialize the sub_indices list sub_indices = [None]*ndim #decode each dimension multiplier = np.prod(shape[:-1]) for d,sz in enumerate(shape): sub_indices[ndim - d - 1] = (idx / multiplier).astype(int) idx %= multiplier multiplier /= sz return tuple(sub_indices)
Example #25
Source File: utils.py From pixelworld with MIT License | 5 votes |
def merge_structured_arrays(*arrays): """merge a set of structured numpy arrays Parameters ---------- *arrays a set of masked structured arrays. all arrays must have the same number of rows. Returns ------- x : MaskedArray the merged array """ #concatenate all of the sub-arrays fields dtype = sum((array.dtype.descr for array in arrays), []) #empty array with all fields x = ma.empty(len(arrays[0]), dtype=dtype) x = SerializableMaskedArray(x) #assign each field for array in arrays: for name in array.dtype.names: x[name] = array[name] return x
Example #26
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): a = self._handle_nonpos(a * self.base) if isinstance(a, ma.MaskedArray): return ma.log(a) / np.log(self.base) return np.log(a) / np.log(self.base)
Example #27
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): a = self._handle_nonpos(a * 2.0) if isinstance(a, ma.MaskedArray): return ma.log(a) / np.log(2) return np.log2(a)
Example #28
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): a = self._handle_nonpos(a * 10.0) if isinstance(a, ma.MaskedArray): return ma.log10(a) return np.log10(a)
Example #29
Source File: recfunctions.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output
Example #30
Source File: recfunctions.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output