Python scipy.special() Examples
The following are 30
code examples of scipy.special().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: utils.py From rosetta_recsys2019 with Apache License 2.0 | 6 votes |
def fit_transform( self, X ): i = np.argsort( X, axis = 0 ) j = np.argsort( i, axis = 0 ) assert ( j.min() == 0 ).all() assert ( j.max() == len( j ) - 1 ).all() j_range = len( j ) - 1 self.divider = j_range / self.range transformed = j / self.divider transformed = transformed - self.upper transformed = scipy.special.erfinv( transformed ) ############ # transformed = transformed - np.mean(transformed) return transformed
Example #2
Source File: sersic_utils.py From lenstronomy with MIT License | 6 votes |
def alpha_abs(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0): """ :param x: :param y: :param n_sersic: :param r_eff: :param k_eff: :param center_x: :param center_y: :return: """ n = n_sersic x_red = self._x_reduced(x, y, n_sersic, r_eff, center_x, center_y) b = self.b_n(n_sersic) a_eff = self._alpha_eff(r_eff, n_sersic, k_eff) alpha = 2. * a_eff * x_red ** (-n) * (special.gammainc(2 * n, b * x_red)) return alpha
Example #3
Source File: my_wavelets.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def frequency(self, w, s=1.0): """Frequency representation of derivative of Gaussian. Parameters ---------- w : float Angular frequency. If `s` is not specified, i.e. set to 1, this can be used as the non-dimensional angular frequency w * s. s : float Scaling factor. Default is 1. Returns ------- out : complex Value of the derivative of Gaussian wavelet at the given time """ m = self.m x = s * w gamma = scipy.special.gamma const = -1j ** m / gamma(m + 0.5) ** .5 function = x ** m * np.exp(-x ** 2 / 2) return const * function
Example #4
Source File: UnimplementedValuesTestCases.py From ufora with Apache License 2.0 | 6 votes |
def test_UnconvertibleValueErrorIsUncatchable(self): import scipy.special def f(): try: return scipy.special.airy(0) except: return 0 try: self.evaluateWithExecutor(f) self.assertTrue(False) except pyfora.ComputationError as e: self.assertIsInstance( e.remoteException, Exceptions.UnconvertibleValueError )
Example #5
Source File: UnimplementedValuesTestCases.py From ufora with Apache License 2.0 | 6 votes |
def test_UnconvertibleValueErrorIsUncatchable(self): import scipy.special def f(): try: return scipy.special.airy(0) except: return 0 try: self.evaluateWithExecutor(f) self.assertTrue(False) except pyfora.ComputationError as e: self.assertIsInstance( e.remoteException, Exceptions.UnconvertibleValueError )
Example #6
Source File: UnimplementedValuesTestCases.py From ufora with Apache License 2.0 | 6 votes |
def test_typeWeCantTranslateYet_raise_4(self): import scipy def f(): x = scipy.special return 0 try: self.evaluateWithExecutor(f) self.assertTrue(False) except pyfora.ComputationError as e: self.assertTrue( str(e).startswith("Pyfora didn't know how to convert scipy.special") ) self.assertIsInstance( e.remoteException, Exceptions.UnconvertibleValueError )
Example #7
Source File: my_wavelets.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def frequency(self, w, s=1.0): """Frequency representation of derivative of Gaussian. Parameters ---------- w : float Angular frequency. If `s` is not specified, i.e. set to 1, this can be used as the non-dimensional angular frequency w * s. s : float Scaling factor. Default is 1. Returns ------- out : complex Value of the derivative of Gaussian wavelet at the given time """ m = self.m x = s * w gamma = scipy.special.gamma const = -1j ** m / gamma(m + 0.5) ** .5 function = x ** m * np.exp(-x ** 2 / 2) return const * function
Example #8
Source File: wavelets.py From PyTorchWavelets with MIT License | 6 votes |
def frequency(self, w, s=1.0): """Frequency representation of derivative of Gaussian. Parameters ---------- w : float Angular frequency. If `s` is not specified, i.e. set to 1, this can be used as the non-dimensional angular frequency w * s. s : float Scaling factor. Default is 1. Returns ------- out : complex Value of the derivative of Gaussian wavelet at the given time """ m = self.m x = s * w gamma = scipy.special.gamma const = -1j ** m / gamma(m + 0.5) ** .5 function = x ** m * np.exp(-x ** 2 / 2) return const * function
Example #9
Source File: my_wavelets.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def frequency(self, w, s=1.0): """Frequency representation of derivative of Gaussian. Parameters ---------- w : float Angular frequency. If `s` is not specified, i.e. set to 1, this can be used as the non-dimensional angular frequency w * s. s : float Scaling factor. Default is 1. Returns ------- out : complex Value of the derivative of Gaussian wavelet at the given time """ m = self.m x = s * w gamma = scipy.special.gamma const = -1j ** m / gamma(m + 0.5) ** .5 function = x ** m * np.exp(-x ** 2 / 2) return const * function
Example #10
Source File: pure_scipy.py From ufora with Apache License 2.0 | 6 votes |
def __call__(self, n, k): if not isinstance(n, int): n = int(n) if not isinstance(k, int): k = int(k) res = 1.0 if n < 0 or k < 0: return 0.0 if k == 0: return res if (n - k) < k: return scipy.special.comb(n, n - k) for ix in xrange(k): res = (res * (n - ix)) / (k - ix) return res
Example #11
Source File: test_special.py From numba-scipy with BSD 2-Clause "Simplified" License | 6 votes |
def test_function(name, specialization): if (name, specialization) in SKIP_LIST: pytest.xfail() scipy_func = getattr(sc, name) @numba.njit def numba_func(*args): return scipy_func(*args) args = itertools.product(*( NUMBA_TYPES_TO_TEST_POINTS[numba_type] for numba_type in specialization )) with warnings.catch_warnings(): # Ignore warnings about unsafe casts generated by SciPy. warnings.filterwarnings( action='ignore', message='floating point number truncated to an integer', category=RuntimeWarning, ) compare_functions(args, scipy_func, numba_func)
Example #12
Source File: bsplines.py From Computable with MIT License | 6 votes |
def quadratic(x): """A quadratic B-spline. This is a special case of `bspline`, and equivalent to ``bspline(x, 2)``. """ ax = abs(asarray(x)) res = zeros_like(ax) cond1 = less(ax, 0.5) if cond1.any(): ax1 = ax[cond1] res[cond1] = 0.75 - ax1 ** 2 cond2 = ~cond1 & less(ax, 1.5) if cond2.any(): ax2 = ax[cond2] res[cond2] = (ax2 - 1.5) ** 2 / 2.0 return res
Example #13
Source File: bsplines.py From Computable with MIT License | 6 votes |
def cubic(x): """A cubic B-spline. This is a special case of `bspline`, and equivalent to ``bspline(x, 3)``. """ ax = abs(asarray(x)) res = zeros_like(ax) cond1 = less(ax, 1) if cond1.any(): ax1 = ax[cond1] res[cond1] = 2.0 / 3 - 1.0 / 2 * ax1 ** 2 * (2 - ax1) cond2 = ~cond1 & less(ax, 2) if cond2.any(): ax2 = ax[cond2] res[cond2] = 1.0 / 6 * (2 - ax2) ** 3 return res
Example #14
Source File: my_wavelets.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def frequency(self, w, s=1.0): """Frequency representation of derivative of Gaussian. Parameters ---------- w : float Angular frequency. If `s` is not specified, i.e. set to 1, this can be used as the non-dimensional angular frequency w * s. s : float Scaling factor. Default is 1. Returns ------- out : complex Value of the derivative of Gaussian wavelet at the given time """ m = self.m x = s * w gamma = scipy.special.gamma const = -1j ** m / gamma(m + 0.5) ** .5 function = x ** m * np.exp(-x ** 2 / 2) return const * function
Example #15
Source File: util.py From EnergyPATHWAYS with MIT License | 6 votes |
def df_slice(df, elements, levels, drop_level=True, reset_index=False, return_none=False): if df is None: return None elements, levels = ensure_iterable(elements), ensure_iterable(levels) if not len(levels): return None if len(elements) != len(levels) and len(levels) > 1: raise ValueError('Number of elements ' + str(len(elements)) + ' must match the number of levels ' + str(len(levels))) # special case where we use a different method to handle multiple elements if len(levels) == 1 and len(elements) > 1: df = df.reset_index().loc[df.reset_index()[levels[0]].isin(elements)].set_index(df.index.names) else: # remove levels if they are not in the df elements, levels = zip(*[(e, l) for e, l in zip(elements, levels) if l in df.index.names]) result = df.xs(elements, level=levels, drop_level=drop_level) df = result.reset_index().set_index(result.index.names) if reset_index else result if not len(df) and return_none: return None else: return df
Example #16
Source File: parser.py From bayesloop with MIT License | 6 votes |
def _convert(self, string): """ Converts string in query to either a Parameter instance, a Numpy function, a scipy.special function or a float number. Args: string(str): string to convert Returns: Parameter instance, function or float """ if string in self.names: param = [p for p in self.parameters if p.name == string][0] return param.copy() elif isinstance(string, str) and (string in dir(np)) and callable(getattr(np, string)): return getattr(np, string) elif isinstance(string, str) and (string in dir(sp)) and callable(getattr(sp, string)): return getattr(sp, string) else: return float(string)
Example #17
Source File: array.py From mars with Apache License 2.0 | 6 votes |
def rel_entr(self, other): try: naked_other = naked(other) except TypeError: # pragma: no cover return NotImplemented xp = get_array_module(self.spmatrix) if xp is np: from scipy.special import rel_entr else: # pragma: no cover from cupyx.scipy.special import rel_entr if get_array_module(naked_other).isscalar(naked_other): # pragma: no cover return call_sparse_binary_scalar(rel_entr, self, naked_other) else: if issparse(naked_other): # pragma: no cover naked_other = other.toarray() x = get_sparse_module(self.spmatrix).csr_matrix( rel_entr(self.toarray(), naked_other)) if issparse(x): return SparseNDArray(x, shape=self.shape) return get_array_module(x).asarray(x)
Example #18
Source File: ryutils.py From pyradi with MIT License | 5 votes |
def detectThresholdToNoiseSignalToNoisepD(SignalToNoise, pD): """ Solve for the threshold to noise ratio, given the signal to noise ratio and probability of detection. References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. R. D. Hippenstiel, Detection Theory: Applications and Digital Signal Pro-cessing, CRC Press, 2002 Args: | SignalToNoise (float): the signal to noise ratio [-] | pD (float): the probability of detection [-] Returns: | range (float): signal to noise ratio Raises: | No exception is raised. """ import scipy.special ThresholdToNoise = SignalToNoise - np.sqrt(2) * scipy.special.erfinv(2 * pD -1) return ThresholdToNoise ############################################################################## ##
Example #19
Source File: util.py From EnergyPATHWAYS with MIT License | 5 votes |
def mean_weibul_factor(beta): """ beta is shape parameter of weibul http://reliawiki.org/index.php/The_Weibull_Distribution """ return scipy.special.gamma(1 + 1. / beta)
Example #20
Source File: util.py From EnergyPATHWAYS with MIT License | 5 votes |
def std_weibul_factor(beta): """ beta is shape parameter of weibul http://reliawiki.org/index.php/The_Weibull_Distribution """ return ((scipy.special.gamma(1 + 2. / beta)) - (scipy.special.gamma(1 + 1. / beta) ** 2)) ** .5
Example #21
Source File: math.py From pySPM with Apache License 2.0 | 5 votes |
def CDF(x,mu,sig, amp=1, lg=0, **kargs): if 'Amp' in kargs: from warnings import warn warn("Parameter Amp is deprecated. Please use amp in order to set the amplitude!") amp = kargs.pop('Amp') from scipy.special import erf g = sig*np.sqrt(2*np.log(2)) return amp*lg*(.5+np.arctan2(x-mu,g)/np.pi)+(1-lg)*amp*.5*(1+erf((x-mu)/(sig*np.sqrt(2))))
Example #22
Source File: ryutils.py From pyradi with MIT License | 5 votes |
def detectSignalToNoiseThresholdToNoisePd(ThresholdToNoise, pD): """ Solve for the signal to noise ratio, given the threshold to noise ratio and probability of detection. Using the theory of matched filter design, calculate the signal to noise ratio, to achieve a required probability of detection. References: "Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication. R. D. Hippenstiel, Detection Theory: Applications and Digital Signal Pro-cessing, CRC Press, 2002 Args: | ThresholdToNoise (float): the threshold to noise ratio [-] | pD (float): the probability of detection [-] Returns: | range (float): signal to noise ratio Raises: | No exception is raised. """ import scipy.special SignalToNoise = np.sqrt(2) * scipy.special.erfinv(2 * pD -1) + ThresholdToNoise return SignalToNoise ############################################################################## ##
Example #23
Source File: linbasex.py From PyAbel with MIT License | 5 votes |
def _bas(ord, angle, COS, TRI): """Define Basis vectors for a given polynomial order "order" and a given projection angle "angle". """ basis_vec = scipy.special.eval_legendre(ord, angle) *\ scipy.special.eval_legendre(ord, COS) * TRI return basis_vec
Example #24
Source File: __init__.py From fluids with MIT License | 5 votes |
def iv(*args, **kwargs): from scipy.special import iv return iv(*args, **kwargs)
Example #25
Source File: histogram.py From CrisisMappingToolkit with Apache License 2.0 | 5 votes |
def __cdf_percentile(self, params, percentile, backscatter_model): mode = params[0] k = params[1] offset = params[2] if backscatter_model == RadarHistogram.BACKSCATTER_MODEL_GAUSSIAN: return scipy.special.erfinv(percentile / 0.5 - 1) * k * math.sqrt(2) + mode theta = (mode - offset) / (k - 1) v = scipy.special.gammaincinv(k, percentile) * theta + offset return v
Example #26
Source File: histogram.py From CrisisMappingToolkit with Apache License 2.0 | 5 votes |
def __cdf(self, params, x, backscatter_model): mode = params[0] k = params[1] offset = params[2] if backscatter_model == RadarHistogram.BACKSCATTER_MODEL_GAUSSIAN: return 0.5 * (1 + scipy.special.erf((x - mode) / (k * math.sqrt(2)))) theta = (mode - offset) / (k - 1) return scipy.special.gammainc(k, (x - offset) / theta) # find x where __cdf(params, offset, x) = percentile
Example #27
Source File: __init__.py From fluids with MIT License | 5 votes |
def erf(*args, **kwargs): from scipy.special import erf return erf(*args, **kwargs) # from scipy.special import lambertw, ellipe, gammaincc, gamma # fluids # from scipy.special import i1, i0, k1, k0, iv # ht # from scipy.special import hyp2f1 # if erf is None: # from scipy.special import erf
Example #28
Source File: __init__.py From fluids with MIT License | 5 votes |
def ellipkinc(phi, m): from scipy.special import ellipkinc return ellipkinc(phi, m)
Example #29
Source File: __init__.py From fluids with MIT License | 5 votes |
def hyp2f1(*args, **kwargs): from scipy.special import hyp2f1 return hyp2f1(*args, **kwargs)
Example #30
Source File: __init__.py From fluids with MIT License | 5 votes |
def k0(*args, **kwargs): from scipy.special import k0 return k0(*args, **kwargs)