Python numpy.asfarray() Examples
The following are 30
code examples of numpy.asfarray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: complex_watson.py From pb_bss with MIT License | 6 votes |
def log_norm_low_concentration(scale, dimension): """ Calculates logarithm of pdf function. Good at very low concentrations but starts to drop of at 20. """ scale = np.asfarray(scale) shape = scale.shape scale = scale.ravel() # Mardia1999Watson Equation 4, Taylor series b_range = range(dimension, dimension + 20 - 1 + 1) b_range = np.asarray(b_range)[None, :] return ( np.log(2) + dimension * np.log(np.pi) - np.log(math.factorial(dimension - 1)) + np.log(1 + np.sum(np.cumprod(scale[:, None] / b_range, -1), -1)) ).reshape(shape)
Example #2
Source File: basic.py From lambda-packs with MIT License | 6 votes |
def _asfarray(x): """Like numpy asfarray, except that it does not modify x dtype if x is already an array with a float dtype, and do not cast complex types to real.""" if hasattr(x, "dtype") and x.dtype.char in numpy.typecodes["AllFloat"]: # 'dtype' attribute does not ensure that the # object is an ndarray (e.g. Series class # from the pandas library) if x.dtype == numpy.half: # no half-precision routines, so convert to single precision return numpy.asarray(x, dtype=numpy.float32) return numpy.asarray(x, dtype=x.dtype) else: # We cannot use asfarray directly because it converts sequences of # complex to sequence of real ret = numpy.asarray(x) if ret.dtype == numpy.half: return numpy.asarray(ret, dtype=numpy.float32) elif ret.dtype.char not in numpy.typecodes["AllFloat"]: return numpy.asfarray(x) return ret
Example #3
Source File: make_clean_mask.py From prefactor with GNU General Public License v3.0 | 6 votes |
def __init__(self, x, y): if len(x) != len(y): raise IndexError('x and y must be equally sized.') self.x = np.asfarray(x) self.y = np.asfarray(y) # Closes the polygon if were open x1, y1 = x[0], y[0] xn, yn = x[-1], y[-1] if x1 != xn or y1 != yn: self.x = np.concatenate((self.x, [x1])) self.y = np.concatenate((self.y, [y1])) # Anti-clockwise coordinates if _det(self.x, self.y) < 0: self.x = self.x[::-1] self.y = self.y[::-1]
Example #4
Source File: basic.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def _asfarray(x): """Like numpy asfarray, except that it does not modify x dtype if x is already an array with a float dtype, and do not cast complex types to real.""" if hasattr(x, "dtype") and x.dtype.char in numpy.typecodes["AllFloat"]: # 'dtype' attribute does not ensure that the # object is an ndarray (e.g. Series class # from the pandas library) if x.dtype == numpy.half: # no half-precision routines, so convert to single precision return numpy.asarray(x, dtype=numpy.float32) return numpy.asarray(x, dtype=x.dtype) else: # We cannot use asfarray directly because it converts sequences of # complex to sequence of real ret = numpy.asarray(x) if ret.dtype == numpy.half: return numpy.asarray(ret, dtype=numpy.float32) elif ret.dtype.char not in numpy.typecodes["AllFloat"]: return numpy.asfarray(x) return ret
Example #5
Source File: array_utils.py From scikit-ued with MIT License | 6 votes |
def complex_array(real, imag): """ Combine two real ndarrays into a complex array. Parameters ---------- real, imag : array_like Real and imaginary parts of a complex array. Returns ------- complex : `~numpy.ndarray` Complex array. """ real, imag = np.asfarray(real), np.asfarray(imag) comp = real.astype(np.complex) comp += 1j * imag return comp
Example #6
Source File: targetpixelfile.py From lightkurve with MIT License | 6 votes |
def _estimate_centroids_via_quadratic(self, aperture_mask): """Estimate centroids by fitting a 2D quadratic to the brightest pixels; this is a helper method for `estimate_centroids()`.""" aperture_mask = self._parse_aperture_mask(aperture_mask) col_centr, row_centr = [], [] for idx in range(len(self.time)): col, row = centroid_quadratic(self.flux[idx], mask=aperture_mask) col_centr.append(col) row_centr.append(row) # Finally, we add .5 to the result bellow because the convention is that # pixels are centered at .5, 1.5, 2.5, ... col_centr = np.asfarray(col_centr) + self.column + .5 row_centr = np.asfarray(row_centr) + self.row + .5 col_centr = Quantity(col_centr, unit='pixel') row_centr = Quantity(row_centr, unit='pixel') return col_centr, row_centr
Example #7
Source File: metrics.py From neural_graph_collaborative_filtering with MIT License | 6 votes |
def dcg_at_k(r, k, method=1): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0.
Example #8
Source File: metrics.py From knowledge_graph_attention_network with MIT License | 6 votes |
def dcg_at_k(r, k, method=1): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0.
Example #9
Source File: bg_cache.py From FRETBursts with GNU General Public License v2.0 | 6 votes |
def _load_bg_data(d, bg_calc_kwargs, h5file): """Load background data from a HDF5 file.""" group_name = bg_to_signature(d, **bg_calc_kwargs) if group_name not in h5file.root.background: msg = 'Group "%s" not found in the HDF5 file.' % group_name raise ValueError(msg) bg_auto_th_us0 = None bg_group = h5file.get_node('/background/', group_name) pprint('\n - Loading bakground data: ') bg = {} for node in bg_group._f_iter_nodes(): if node._v_name.startswith('BG_'): ph_sel = Ph_sel.from_str(node._v_name[len('BG_'):]) bg[ph_sel] = [np.asfarray(b) for b in node.read()] Lim = bg_group.Lim.read() Ph_p = bg_group.Ph_p.read() if 'bg_auto_th_us0' in bg_group: bg_auto_th_us0 = bg_group.bg_auto_th_us0.read() return bg, Lim, Ph_p, bg_auto_th_us0
Example #10
Source File: io_utils.py From m3gm with GNU General Public License v3.0 | 6 votes |
def load_embeddings(filename, a2i, emb_size=DEFAULT_EMBEDDING_DIM): """ loads embeddings for synsets ("atoms") from existing file, or initializes them to uniform random """ atom_to_embed = {} if filename is not None: if filename.endswith('npy'): return np.load(filename) with codecs.open(filename, "r", "utf-8") as f: for line in f: split = line.split() if len(split) > 2: atom = split[0] vec = split[1:] atom_to_embed[atom] = np.asfarray(vec) embedding_dim = len(atom_to_embed[list(atom_to_embed.keys())[0]]) else: embedding_dim = emb_size out = np.random.uniform(-0.8, 0.8, (len(a2i), embedding_dim)) if filename is not None: for atom, embed in list(atom_to_embed.items()): if atom in a2i: out[a2i[atom]] = np.array(embed) return out
Example #11
Source File: routines.py From emva1288 with GNU General Public License v3.0 | 6 votes |
def LinearB(Xi, Yi): X = np.asfarray(Xi) Y = np.asfarray(Yi) # we want a function y = m * x + b def fp(v, x): return x * v[0] + v[1] # the error of the function e = x - y def e(v, x, y): return (fp(v, x) - y) # the initial value of m, we choose 1, because we thought YODA would # have chosen 1 v0 = np.array([1.0, 1.0]) vr, _success = leastsq(e, v0, args=(X, Y)) # compute the R**2 (sqrt of the mean of the squares of the errors) err = np.sqrt(sum(np.square(e(vr, X, Y))) / (len(X) * len(X))) # print vr, success, err return vr, err
Example #12
Source File: constructor.py From CNN_Own_Dataset with MIT License | 6 votes |
def next_batch(self, batch_size=10): datas = np.empty((0, self._height, self._width, self._dimension), int) labels = np.empty((0, self._class_len), int) for idx in range(batch_size): random.randint(0, len(self._datas)-1) tmp_img = scipy.misc.imread(self._datas[idx]) tmp_img = scipy.misc.imresize(tmp_img, (self._height, self._width)) tmp_img = tmp_img.reshape(1, self._height, self._width, self._dimension) datas = np.append(datas, tmp_img, axis=0) labels = np.append(labels, np.eye(self._class_len)[int(np.asfarray(self._labels[idx]))].reshape(1, self._class_len), axis=0) return datas, labels
Example #13
Source File: basic.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _asfarray(x): """Like numpy asfarray, except that it does not modify x dtype if x is already an array with a float dtype, and do not cast complex types to real.""" if hasattr(x, "dtype") and x.dtype.char in numpy.typecodes["AllFloat"]: # 'dtype' attribute does not ensure that the # object is an ndarray (e.g. Series class # from the pandas library) if x.dtype == numpy.half: # no half-precision routines, so convert to single precision return numpy.asarray(x, dtype=numpy.float32) return numpy.asarray(x, dtype=x.dtype) else: # We cannot use asfarray directly because it converts sequences of # complex to sequence of real ret = numpy.asarray(x) if ret.dtype == numpy.half: return numpy.asarray(ret, dtype=numpy.float32) elif ret.dtype.char not in numpy.typecodes["AllFloat"]: return numpy.asfarray(x) return ret
Example #14
Source File: eval.py From deepBoosting with MIT License | 5 votes |
def compute_psnr(im1, im2): if im1.shape != im2.shape: raise Exception('the shapes of two images are not equal') rmse = np.sqrt(((np.asfarray(im1) - np.asfarray(im2)) ** 2).mean()) psnr = 20 * np.log10(255.0 / rmse) return psnr
Example #15
Source File: eval.py From deepBoosting with MIT License | 5 votes |
def compute_psnr(im1, im2): if im1.shape != im2.shape: raise Exception('the shapes of two images are not equal') rmse = np.sqrt(((np.asfarray(im1) - np.asfarray(im2)) ** 2).mean()) psnr = 20 * np.log10(255.0 / rmse) return psnr
Example #16
Source File: eval.py From deepBoosting with MIT License | 5 votes |
def compute_psnr(im1, im2): if im1.shape != im2.shape: raise Exception('the shapes of two images are not equal') rmse = np.sqrt(((np.asfarray(im1) - np.asfarray(im2)) ** 2).mean()) psnr = 20 * np.log10(255.0 / rmse) return psnr
Example #17
Source File: eval.py From deepBoosting with MIT License | 5 votes |
def compute_psnr(im1, im2): if im1.shape != im2.shape: raise Exception('the shapes of two images are not equal') rmse = np.sqrt(((np.asfarray(im1) - np.asfarray(im2)) ** 2).mean()) psnr = 20 * np.log10(255.0 / rmse) return psnr
Example #18
Source File: metrics.py From Azimuth with BSD 3-Clause "New" or "Revised" License | 5 votes |
def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 1, method=1) 3.0 >>> dcg_at_k(r, 2) 5.0 >>> dcg_at_k(r, 2, method=1) 4.2618595071429155 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0.
Example #19
Source File: endurance.py From fatpack with ISC License | 5 votes |
def ensure_array(method): @wraps(method) def wrapped_method(self, x): x_is_float_or_int = isinstance(x, float) or isinstance(x, int) if x_is_float_or_int: xm = np.array([x]) else: xm = np.asfarray(x) ym = method(self, xm) if x_is_float_or_int: ym = ym[0] return ym return wrapped_method
Example #20
Source File: test_regression.py From pySINDy with MIT License | 5 votes |
def test_asfarray_none(self): # Test for changeset r5065 assert_array_equal(np.array([np.nan]), np.asfarray([None]))
Example #21
Source File: jacobian.py From pysaliency with MIT License | 5 votes |
def jac(self, x, *args, **kwargs): self.log('G[') x0 = np.asfarray(x) #print x0 dxs = np.zeros((len(x0), 2*len(x0))) for i in range(len(x0)): dxs[i, i] = -self.epsilon dxs[i, len(x0)+i] = self.epsilon results = [self(*(x0 + dxs[:, i], ) + args, **kwargs) for i in range(2*len(x0))] jac = np.zeros([len(x0), len(np.atleast_1d(results[0]))]) for i in range(len(x0)): jac[i] = (results[len(x0)+i] - results[i]) / (2*self.epsilon) self.log(']') return jac.transpose()
Example #22
Source File: jacobian.py From pysaliency with MIT License | 5 votes |
def jac(self, x, *args, **kwargs): self.log('G[') x0 = np.asfarray(x) #print x0 dxs = np.zeros((len(x0), len(x0) + 1)) for i in range(len(x0)): dxs[i, i + 1] = self.epsilon results = [self(*(x0 + dxs[:, i], ) + args, **kwargs) for i in range(len(x0) + 1)] jac = np.zeros([len(x0), len(np.atleast_1d(results[0]))]) for i in range(len(x0)): jac[i] = (results[i + 1] - results[0]) / self.epsilon self.log(']') return jac.transpose()
Example #23
Source File: test_regression.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_asfarray_none(self): # Test for changeset r5065 assert_array_equal(np.array([np.nan]), np.asfarray([None]))
Example #24
Source File: dummy.py From postpic with GNU General Public License v3.0 | 5 votes |
def simextent(self, axis): g = self.grid(None, axis) return np.asfarray([g[0], g[-1]])
Example #25
Source File: gradient_checker.py From deep_image_model with Apache License 2.0 | 5 votes |
def _compute_gradient(x, x_shape, dx, y, y_shape, dy, x_init_value=None, delta=1e-3): """Computes the theoretical and numerical jacobian.""" t = dtypes.as_dtype(x.dtype) allowed_types = [dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128] assert t.base_dtype in allowed_types, "Don't support type %s for x" % t.name t2 = dtypes.as_dtype(y.dtype) assert t2.base_dtype in allowed_types, "Don't support type %s for y" % t2.name if x_init_value is not None: i_shape = list(x_init_value.shape) assert(list(x_shape) == i_shape), "x_shape = %s, init_data shape = %s" % ( x_shape, i_shape) x_data = x_init_value else: if t == dtypes.float16: dtype = np.float16 elif t == dtypes.float32: dtype = np.float32 else: dtype = np.float64 x_data = np.asfarray(np.random.random_sample(x_shape), dtype=dtype) jacob_t = _compute_theoretical_jacobian(x, x_shape, x_data, dy, y_shape, dx) jacob_n = _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta) return jacob_t, jacob_n
Example #26
Source File: metrics.py From chameleon_recsys with MIT License | 5 votes |
def _ndcg_at_k(r, k): #Based on https://gist.github.com/bwhite/3726239, but with alternative formulation of DCG #which places stronger emphasis on retrieving relevant documents (used in Kaggle) def dcg_at_k(r, k): r = np.asfarray(r)[:k] if r.size: return np.sum((np.power(2,r)-1) / np.log2(np.arange(2, r.size + 2))) return 0. dcg_max = dcg_at_k(sorted(r, reverse=True), k) if not dcg_max: return 0. return dcg_at_k(r, k) / dcg_max
Example #27
Source File: complex_watson.py From pb_bss with MIT License | 5 votes |
def log_norm_high_concentration(scale, dimension): """ Calculates logarithm of pdf function. High concentration above 10 and dimension below 8. """ scale = np.asfarray(scale) shape = scale.shape scale = scale.ravel() return ( np.log(2.) + dimension * np.log(np.pi) + (1. - dimension) * np.log(scale) + scale ).reshape(shape)
Example #28
Source File: complex_watson.py From pb_bss with MIT License | 5 votes |
def log_norm_medium_concentration(scale, dimension): """ Calculates logarithm of pdf function. Almost complete range of interest and dimension below 8. """ scale = np.asfarray(scale) shape = scale.shape scale = scale.flatten() # Function is unstable at zero. # Scale needs to be float for this to work. scale[scale < 1e-2] = 1e-2 r_range = range(dimension - 2 + 1) r = np.asarray(r_range)[None, :] # Mardia1999Watson Equation 3 temp = ( scale[:, None] ** r * np.exp(-scale[:, None]) / np.asarray([math.factorial(_r) for _r in r_range]) ) return ( np.log(2.) + dimension * np.log(np.pi) + (1. - dimension) * np.log(scale) + scale + np.log(1. - np.sum(temp, -1)) ).reshape(shape)
Example #29
Source File: eval.py From nextitnet with MIT License | 5 votes |
def dcg_at_k(r, k): r = np.asfarray(r)[:k] return np.sum(r / np.log2(np.arange(2, r.size + 2)))
Example #30
Source File: metrics.py From knowledge_graph_attention_network with MIT License | 5 votes |
def recall_at_k(r, k, all_pos_num): r = np.asfarray(r)[:k] return np.sum(r) / all_pos_num