Python ipdb.set_trace() Examples
The following are 30
code examples of ipdb.set_trace().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
ipdb
, or try the search function
.
Example #1
Source File: visualize_tfrecords.py From human_dynamics with BSD 2-Clause "Simplified" License | 6 votes |
def visualize_tfrecords_test(fpaths): for fname in fpaths: print(fname) for serialized_ex in tf.python_io.tf_record_iterator(fname): results = read_from_example(serialized_ex) images = results['images'] kps = results['kps'] for i, (image, kp) in enumerate(zip(images, kps)): kp = kp.T import matplotlib.pyplot as plt plt.ion() plt.clf() plt.figure(1) skel_img = draw_skeleton(image, kp[:2, :], vis=kp[2, :]) plt.imshow(skel_img) plt.title('%d' % i) plt.axis('off') plt.pause(1e-5) if i == 0: ipdb.set_trace() if i > config.max_sequence_length: break ipdb.set_trace()
Example #2
Source File: Models.py From SEASS with MIT License | 6 votes |
def forward(self, input): """ input: (wrap(srcBatch), wrap(srcBioBatch), lengths), (wrap(tgtBatch), wrap(copySwitchBatch), wrap(copyTgtBatch)) """ # ipdb.set_trace() src = input[0] tgt = input[1][0][:-1] # exclude last target from inputs src_pad_mask = Variable(src[0].data.eq(s2s.Constants.PAD).transpose(0, 1).float(), requires_grad=False, volatile=False) enc_hidden, context = self.encoder(src) init_att = self.make_init_att(context) enc_hidden = self.decIniter(enc_hidden[1]).unsqueeze(0) # [1] is the last backward hiden g_out, dec_hidden, _attn, _attention_vector = self.decoder(tgt, enc_hidden, context, src_pad_mask, init_att) return g_out
Example #3
Source File: kitti_LidarImg_data_generator.py From Attentional-PointNet with GNU General Public License v3.0 | 6 votes |
def lidar_to_heightmap(points, img_size): # pdb.set_trace() lidar_data = np.array(points[:, :2]) height_data = np.array(points[:,2]) height_data *= 255/2 height_data[height_data < 0] = 0 height_data[height_data > 255] = 255 height_data = np.fabs(height_data) height_data = height_data.astype(np.int32) lidar_data *= 9.9999 lidar_data -= (0.5 * img_size, 0.5 * img_size) lidar_data = np.fabs(lidar_data) lidar_data = lidar_data.astype(np.int32) lidar_data = np.reshape(lidar_data, (-1, 2)) lidar_img = np.zeros((img_size, img_size)) lidar_img[tuple(lidar_data.T)] = height_data # TODO: sort the point wrt height first lex sort return lidar_img
Example #4
Source File: Models.py From NQG with GNU General Public License v3.0 | 6 votes |
def forward(self, input): """ (wrap(srcBatch), lengths), \ (wrap(bioBatch), lengths), ((wrap(x) for x in featBatches), lengths), \ (wrap(tgtBatch), wrap(copySwitchBatch), wrap(copyTgtBatch)), \ indices """ # ipdb.set_trace() src = input[0] tgt = input[3][0][:-1] # exclude last target from inputs src_pad_mask = Variable(src[0].data.eq(s2s.Constants.PAD).transpose(0, 1).float(), requires_grad=False, volatile=False) bio = input[1] feats = input[2] enc_hidden, context = self.encoder(src, bio, feats) init_att = self.make_init_att(context) enc_hidden = self.decIniter(enc_hidden[1]).unsqueeze(0) # [1] is the last backward hiden g_out, c_out, c_gate_out, dec_hidden, _attn, _attention_vector = self.decoder(tgt, enc_hidden, context, src_pad_mask, init_att) return g_out, c_out, c_gate_out
Example #5
Source File: visualizer.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 6 votes |
def tensor2im(self, img, imtype=np.uint8, convert_value=255.0): # ToDo: improve this horrible function if img.shape[0] > 3: # case of focalstack img = img[:, :3] if(type(img) != np.ndarray): image_numpy = img.cpu().float().numpy() else: image_numpy = img if img.shape[0] == 3: image_numpy = (image_numpy + 1) / 2.0 * convert_value # image_numpy = (image_numpy + mean/std) * std * 255.0 image_numpy = image_numpy.astype(imtype) # .transpose([2,0,1]) else: # st() # image_numpy = image_numpy.astype(imtype) image_numpy = (image_numpy - image_numpy.min()) * (255 / self.opt.max_distance) # image_numpy = image_numpy - image_numpy.min() # image_numpy = (image_numpy / image_numpy.max()) * 255 # image_numpy = (image_numpy / image_numpy.max()) * 255 image_numpy = np.repeat(image_numpy, 3, axis=0) return image_numpy # visuals: dictionary of images to display or save
Example #6
Source File: kitti_evaluation.py From Attentional-PointNet with GNU General Public License v3.0 | 6 votes |
def lidar_to_img(points, img_size): # pdb.set_trace() lidar_data = np.array(points[:, :2]) lidar_data *= 9.9999 lidar_data -= (0.5 * img_size, 0.5 * img_size) lidar_data = np.fabs(lidar_data) lidar_data = lidar_data.astype(np.int32) lidar_data = np.reshape(lidar_data, (-1, 2)) lidar_img = np.zeros((img_size, img_size)) lidar_img[tuple(lidar_data.T)] = 255 return torch.tensor(lidar_img).cuda() # def lidar_to_img(points, img_size): # # pdb.set_trace() # lidar_data = points[:, :2] # lidar_data *= 9.9999 # lidar_data -= torch.tensor((0.5 * img_size, 0.5 * img_size)).cuda() # lidar_data = torch.abs(lidar_data) # lidar_data = torch.floor(lidar_data).long() # lidar_data = lidar_data.view(-1, 2) # lidar_img = torch.zeros((img_size, img_size)).cuda() # lidar_img[lidar_data.permute(1,0)] = 255 # return lidar_img
Example #7
Source File: mtl_test.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 6 votes |
def initialize(self, opt): self.opt = opt self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2 self.gpu_ids = '' self.batchSize = self.opt.batchSize self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name) self.create_save_folders() self.netG = self.load_network() # st() if 'vaihingen' not in self.opt.dataset_name: self.data_loader, _ = CreateDataLoader(opt) # visualizer self.visualizer = Visualizer(self.opt) if 'semantics' in self.opt.tasks: from util.util import get_color_palette self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name)) self.opt.color_palette = list(self.opt.color_palette.reshape(-1))
Example #8
Source File: debug.py From blueoil with Apache License 2.0 | 6 votes |
def sample_kernel(): ker_n = 16 ker_h = 3 ker_w = 3 ker_d = 8 ker_shape = [ker_n, ker_h, ker_w, ker_d] filter_h = 3 filter_w = 3 test_seq = np.array(np.arange(ker_d * ker_h * ker_w), ndmin=2) ones = np.array(np.ones(ker_n), ndmin=2).T test_mat = ones * test_seq # out = im2col(x, [ker_h, ker_w]) x = test_mat.astype(np.uint32) qm = QuantizedMatrix(x, 2) import ipdb ipdb.set_trace() return out
Example #9
Source File: data_set_gen.py From Multi-channel-speech-extraction-using-DNN with MIT License | 6 votes |
def transform(audio_data, save_image_path, nFFT=256, overlap=0.75): '''audio_data: signals to convert save_image_path: path to store the image file''' # spectrogram freq_data = stft(audio_data, nFFT, overlap) freq_data = np.maximum(np.abs(freq_data), np.max(np.abs(freq_data)) / 10000) log_freq_data = 20. * np.log10(freq_data / 1e-4) N_samples = log_freq_data.shape[0] # log_freq_data = np.maximum(log_freq_data, max_m - 70) # print(np.max(np.max(log_freq_data))) # print(np.min(np.min(log_freq_data))) log_freq_data = np.round(log_freq_data) log_freq_data = np.transpose(log_freq_data) # ipdb.set_trace() assert np.max(np.max(log_freq_data)) < 256, 'spectrogram value too large' # save the image spec_imag = Image.fromarray(log_freq_data) spec_imag = spec_imag.convert('RGB') spec_imag.save(save_image_path) return N_samples
Example #10
Source File: SENN.py From Multi-channel-speech-extraction-using-DNN with MIT License | 6 votes |
def loss(self, inf_targets, inf_vads, targets, vads, mtl_fac): ''' Loss definition Only speech inference loss is defined and work quite well Add VAD cross entropy loss if you want ''' loss_v1 = tf.nn.l2_loss(inf_targets - targets) / self.batch_size loss_o = loss_v1 reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # ipdb.set_trace() loss_v = loss_o + tf.add_n(reg_loss) tf.scalar_summary('loss', loss_v) # loss_merge = tf.cond( # is_val, lambda: tf.scalar_summary('val_loss_batch', loss_v), # lambda: tf.scalar_summary('loss', loss_v)) return loss_v, loss_o # return tf.reduce_mean(tf.nn.l2_loss(inf_targets - targets))
Example #11
Source File: selectImage_multiprocess.py From MetaFGNet with MIT License | 6 votes |
def worker(): global SHARE_Q while True : if not SHARE_Q.empty(): item = SHARE_Q.get() # ipdb.set_trace() do_something(item) time.sleep(1) SHARE_Q.task_done() else: break #parser = argparse.ArgumentParser(description='copy selected images from source dir. to target dir.') #parser.add_argument('--rm_dset', default=False, action='store_true', # help='true to remove existing selected data before reproducing it') #parser.add_argument('--auxiliary-dataset', type=str, default='imagenet', # help='choose auxiliary dataset between imagenet/l_bird') #args = parser.parse_args()
Example #12
Source File: DSHRED.py From MultiTurnDialogZoo with MIT License | 6 votes |
def forward(self, inpt, lengths, hidden=None): # use pack_padded # inpt: [seq_len, batch], lengths: [batch_size] embedded = self.embed(inpt) # [seq_len, batch, input_size] if not hidden: hidden = torch.randn(self.n_layer * 2, len(lengths), self.hidden_size) if torch.cuda.is_available(): hidden = hidden.cuda() embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths, enforce_sorted=False) _, hidden = self.gru(embedded, hidden) hidden = hidden.sum(axis=0) # [n_layer * bidirection, batch, hidden_size] # hidden = hidden.reshape(hidden.shape[1], -1) # ipdb.set_trace() # hidden = hidden.permute(1, 0, 2) # [batch, n_layer * bidirectional, hidden_size] # hidden = hidden.reshape(hidden.size(0), -1) # [batch, *] # hidden = self.bn(hidden) hidden = torch.tanh(hidden) # [batch, hidden] return hidden
Example #13
Source File: VHRED.py From MultiTurnDialogZoo with MIT License | 6 votes |
def forward(self, inpt, lengths, hidden=None): # use pack_padded # inpt: [seq_len, batch], lengths: [batch_size] # embedded = self.embed(inpt) # [seq_len, batch, input_size] if not hidden: hidden = torch.randn(self.n_layer * 2, len(lengths), self.hidden_size) if torch.cuda.is_available(): hidden = hidden.cuda() embedded = nn.utils.rnn.pack_padded_sequence(inpt, lengths, enforce_sorted=False) _, hidden = self.gru(embedded, hidden) # [n_layer * bidirection, batch, hidden_size] # hidden = hidden.reshape(hidden.shape[1], -1) # ipdb.set_trace() hidden = hidden.sum(axis=0) # [4, batch, hidden] -> [batch, hidden] # hidden = hidden.permute(1, 0, 2) # [batch, n_layer * bidirectional, hidden_size] # hidden = hidden.reshape(hidden.size(0), -1) # [batch, *] # hidden = self.bn(hidden) # hidden = self.hidden_proj(hidden) hidden = torch.tanh(hidden) # [batch, hidden] return hidden
Example #14
Source File: Loss.py From reversible-rnn with MIT License | 6 votes |
def __init__(self, generator, tgt_vocab, label_smoothing=0.0): super(NMTLossCompute, self).__init__(generator, tgt_vocab) assert (label_smoothing >= 0.0 and label_smoothing <= 1.0) self.tgt_vocab_len = len(tgt_vocab) if label_smoothing > 0: # When label smoothing is turned on, # KL-divergence between q_{smoothed ground truth prob.}(w) # and p_{prob. computed by model}(w) is minimized. # If label smoothing value is set to zero, the loss # is equivalent to NLLLoss or CrossEntropyLoss. # All non-true labels are uniformly set to low-confidence. self.criterion = nn.KLDivLoss(size_average=False) one_hot = torch.randn(1, len(tgt_vocab)) one_hot.fill_(label_smoothing / (len(tgt_vocab) - 2)) one_hot[0][self.padding_idx] = 0 self.register_buffer('one_hot', one_hot) else: weight = torch.ones(len(tgt_vocab)) weight[self.padding_idx] = 0 self.criterion = nn.NLLLoss(weight, size_average=False) # IMPORTANT: NLLLoss is what we use. Interesting that size_average=False # ipdb.set_trace() self.confidence = 1.0 - label_smoothing
Example #15
Source File: HRAN_ablation.py From MultiTurnDialogZoo with MIT License | 5 votes |
def forward(self, inpt, lengths, hidden=None): # use pack_padded # inpt: [seq_len, batch], lengths: [batch_size] embedded = self.embed(inpt) # [seq_len, batch, input_size] if not hidden: hidden = torch.randn(self.n_layer * 2, len(lengths), self.hidden_size) if torch.cuda.is_available(): hidden = hidden.cuda() embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths, enforce_sorted=False) output, hidden = self.gru(embedded, hidden) output, _ = nn.utils.rnn.pad_packed_sequence(output) output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] # [n_layer * bidirection, batch, hidden_size] # hidden = hidden.reshape(hidden.shape[1], -1) # ipdb.set_trace() hidden = hidden.sum(axis=0) # [4, batch, hidden] -> [batch, hidden] # hidden = hidden.permute(1, 0, 2) # [batch, n_layer * bidirectional, hidden_size] # hidden = hidden.reshape(hidden.size(0), -1) # [batch, *] # hidden = self.bn(hidden) # hidden = self.hidden_proj(hidden) hidden = torch.tanh(hidden) # [batch, hidden] output = torch.tanh(output) # [seq, batch, hidden] return output, hidden
Example #16
Source File: WSeq_RA.py From MultiTurnDialogZoo with MIT License | 5 votes |
def forward(self, inpt, last_hidden, encoder_outputs): # inpt: [batch_size], last_hidden: [2, batch, hidden_size] # encoder_outputs: [turn_len, seq, batch, hidden_size] embedded = self.embed(inpt).unsqueeze(0) # [1, batch_size, embed_size] key = last_hidden.sum(axis=0) # word level attention context_output = [] for turn in encoder_outputs: # ipdb.set_trace() word_attn_weights = self.word_level_attn(key, turn) context = word_attn_weights.bmm(turn.transpose(0, 1)) context = context.transpose(0, 1).squeeze(0) # [batch, hidden] context_output.append(context) context_output = torch.stack(context_output) # [turn, batch, hidden] # output: [seq, batch, hidden], [2, batch, hidden] context_output, hidden = self.context_encoder(context_output) # [batch, hidden_size] if len(encoder_outputs) == 1: context = self.attn(context_output[0], context_output) else: context = self.attn(context_output[-1], context_output[:-1]) context = context.unsqueeze(0) # [1, batch, hidden] rnn_input = torch.cat([embedded, context], 2) # [1, batch, 2 * hidden] # output: [1, batch, hidden_size], hidden: [1, batch, hidden_size] output, hidden = self.gru(rnn_input, last_hidden) output = output.squeeze(0) # [batch, hidden_size] # context = context.squeeze(0) # [batch, hidden] # output = torch.cat([output, context], 1) # [batch, 2 * hidden] output = self.out(output) # [batch, output_size] output = F.log_softmax(output, dim=1) return output, hidden
Example #17
Source File: DSHRED.py From MultiTurnDialogZoo with MIT License | 5 votes |
def predict(self, src, maxlen, lengths, loss=False): # predict for test dataset, return outputs: [maxlen, batch_size] # src: [turn, max_len, batch_size], lengths: [turn, batch_size] with torch.no_grad(): turn_size, batch_size = len(src), src[0].size(1) outputs = torch.zeros(maxlen, batch_size) floss = torch.zeros(maxlen, batch_size, self.output_size) if torch.cuda.is_available(): outputs = outputs.cuda() floss = floss.cuda() turns = [] for i in range(turn_size): # sbatch = src[i].transpose(0, 1) hidden = self.utter_encoder(src[i], lengths[i]) turns.append(hidden) turns = torch.stack(turns) # context encoding # output: [seq, batch, hidden], [batch, hidden] # static_attn: [1, batch, hidden] static_attn, context_output, hidden = self.context_encoder(turns) # hidden = hidden.unsqueeze(0) output = torch.zeros(batch_size, dtype=torch.long).fill_(self.sos) if torch.cuda.is_available(): output = output.cuda() try: for i in range(1, maxlen): output, hidden = self.decoder(output, hidden, context_output, static_attn) floss[i] = output output = output.max(1)[1] outputs[i] = output except: ipdb.set_trace() if loss: return outputs, floss else: return outputs
Example #18
Source File: utils.py From MultiTurnDialogZoo with MIT License | 5 votes |
def sent2glove(vocab, sent): s = np.zeros(vocab['<unk>'].shape, dtype=np.float) for word in nltk.word_tokenize(sent): # ipdb.set_trace() vector = vocab.get(word, vocab['<unk>']) s += vector return s # ================================================================================= #
Example #19
Source File: load_data.py From Azimuth with BSD 3-Clause "New" or "Revised" License | 5 votes |
def read_V1_data(data_file, learn_options, AML_file=cur_dir + "/data/V1_suppl_data.txt"): if data_file is None: data_file = cur_dir + "/data/V1_data.xlsx" human_data = pandas.read_excel(data_file, sheetname=0, index_col=[0, 1]) mouse_data = pandas.read_excel(data_file, sheetname=1, index_col=[0, 1]) Xdf, Y = combine_organisms(human_data, mouse_data) # get position within each gene, then join and re-order # note that 11 missing guides we were told to ignore annotations = pandas.read_csv(AML_file, delimiter='\t', index_col=[0, 4]) annotations.index.names = Xdf.index.names gene_position = pandas.merge(Xdf, annotations, how="inner", left_index=True, right_index=True) gene_position = util.impute_gene_position(gene_position) gene_position = gene_position[['Amino Acid Cut position', 'Nucleotide cut position', 'Percent Peptide']] Y = Y.loc[gene_position.index] Xdf = Xdf.loc[gene_position.index] Y['test'] = 1 # for bookeeping to keep consistent with V2 which uses this for "extra pairs" target_genes = Y['Target gene'].unique() Y.index.names = ['Sequence', 'Target gene'] assert Xdf.index.equals(Y.index), "The index of Xdf is different from the index of Y (this can cause inconsistencies/random performance later on)" if learn_options is not None and learn_options["flipV1target"]: print "************************************************************************" print "*****************MATCHING DOENCH CODE (DEBUG MODE)**********************" print "************************************************************************" # normally it is: Y['average threshold'] = Y['average rank'] > 0.8, where 1s are good guides, 0s are not Y['average threshold'] = Y['average rank'] < 0.2 # 1s are bad guides print "press c to continue" import ipdb ipdb.set_trace() return annotations, gene_position, target_genes, Xdf, Y
Example #20
Source File: read_upenn.py From human_dynamics with BSD 2-Clause "Simplified" License | 5 votes |
def read_upenn(base_dir): seqs = glob(osp.join(base_dir, 'frames/*')) for seq_path in seqs[3:]: seq_name = osp.basename(seq_path) label_path = osp.join(base_dir, 'labels', '{}.mat'.format(seq_name)) show_seq(seq_path, label_path) import ipdb ipdb.set_trace()
Example #21
Source File: nmt_base.py From DualLearning with MIT License | 5 votes |
def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True): probs = [] n_done = 0 for x, y in iterator: n_done += len(x) x, x_mask, y, y_mask = prepare_data(x, y, n_words_src=options['n_words_src'], n_words=options['n_words']) pprobs = f_log_probs(x, x_mask, y, y_mask) for pp in pprobs: probs.append(pp) if numpy.isnan(numpy.mean(probs)): ipdb.set_trace() if verbose: print >>sys.stderr, '%d samples computed' % (n_done) return numpy.array(probs) # optimizers # name(hyperp, tparams, grads, inputs (list), cost) = f_grad_shared, f_update
Example #22
Source File: upenn_to_tfrecords_video.py From human_dynamics with BSD 2-Clause "Simplified" License | 5 votes |
def clean_video(image_paths, gt2ds): """ returns None if video is bad ow. returns cleaned/adjusted image_paths and gt2ds """ for im_path in image_paths: if not osp.exists(im_path): print('!!--{} doesnt exist! Skipping..--!!'.format(im_path)) ipdb.set_trace() return None, None # Cut the frame off at minimum # of visible points. num_vis = np.sum(gt2ds[:, :, 2] > 0, axis=1) if num_vis[0] == 0: # ugly,, but one video starts out with 0 kp num_vis = num_vis[1:] gt2ds = gt2ds[1:] image_paths = image_paths[1:] if np.any(num_vis <= MIN_VIS_PTS): cut_off = (num_vis > MIN_VIS_PTS).tolist().index(False) gt2ds = gt2ds[:cut_off] image_paths = image_paths[:cut_off] if len(image_paths) < MIN_NUM_FRAMES: print('Video too short! {}'.format(len(image_paths))) return None, None return image_paths, gt2ds
Example #23
Source File: WSeq_RA.py From MultiTurnDialogZoo with MIT License | 5 votes |
def forward(self, inpt, lengths, hidden=None): # use pack_padded # inpt: [seq_len, batch], lengths: [batch_size] embedded = self.embed(inpt) # [seq_len, batch, input_size] if not hidden: hidden = torch.randn(self.n_layer * 2, len(lengths), self.hidden_size) if torch.cuda.is_available(): hidden = hidden.cuda() embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths, enforce_sorted=False) output, hidden = self.gru(embedded, hidden) output, _ = nn.utils.rnn.pad_packed_sequence(output) output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] hidden = hidden.sum(axis=0) hidden = torch.tanh(hidden) output = torch.tanh(output) # [seq, batch, hidden] # [n_layer * bidirection, batch, hidden_size] # hidden = hidden.reshape(hidden.shape[1], -1) # ipdb.set_trace() # hidden = hidden.permute(1, 0, 2) # [batch, n_layer * bidirectional, hidden_size] # hidden = hidden.reshape(hidden.size(0), -1) # [batch, *] # hidden = self.bn(self.hidden_proj(hidden)) # hidden = torch.tanh(hidden) # [batch, hidden] return output, hidden
Example #24
Source File: min_norm_solvers.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _min_norm_2d(vecs, dps): """ Find the minimum norm solution as combination of two points This is correct only in 2D ie. min_c |\sum c_i x_i|_2^2 st. \sum c_i = 1 , 1 >= c_1 >= 0 for all i, c_i + c_j = 1.0 for some i, j """ dmin = 1e8 for i in range(len(vecs)): for j in range(i+1,len(vecs)): if (i,j) not in dps: dps[(i, j)] = 0.0 for k in range(len(vecs[i])): dps[(i,j)] += torch.dot(vecs[i][k], vecs[j][k]).item() dps[(j, i)] = dps[(i, j)] if (i,i) not in dps: dps[(i, i)] = 0.0 for k in range(len(vecs[i])): dps[(i,i)] += torch.dot(vecs[i][k], vecs[i][k]).item() if (j,j) not in dps: dps[(j, j)] = 0.0 for k in range(len(vecs[i])): dps[(j, j)] += torch.dot(vecs[j][k], vecs[j][k]).item() c,d = MinNormSolver._min_norm_element_from2(dps[(i,i)], dps[(i,j)], dps[(j,j)]) if d < dmin: dmin = d sol = [(i,j),c,d] return sol, dps
Example #25
Source File: test_model_raster.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def initialize(self, opt): # GenericTestModel.initialize(self, opt) self.opt = opt self.get_color_palette() self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2 self.gpu_ids = '' self.batchSize = self.opt.batchSize self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name) self.create_save_folders() self.opt.use_semantics = (('multitask' in self.opt.model) or ('semantics' in self.opt.model)) self.netG = self.load_network() # self.opt.dfc_preprocessing = 2 # self.data_loader, _ = CreateDataLoader(opt, Dataset) # visualizer self.visualizer = Visualizer(self.opt) if 'semantics' in self.opt.tasks: from util.util import get_color_palette self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name)) # self.opt.color_palette = list(self.opt.color_palette.reshape(-1)) # st() # def initialize(self, opt): # GenericTestModel.initialize(self, opt) # self.get_color_palette()
Example #26
Source File: networks.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def define_G(input_nc, output_nc, ngf, net_architecture, opt, gpu_ids=[]): netG = None use_gpu = len(gpu_ids) > 0 # norm_layer = get_norm_layer(norm_type=norm) use_dropout = opt.use_dropout pretrained = opt.pretrained init_method = opt.init_method use_skips = opt.use_skips d_block_type = opt.d_block_type n_classes = opt.n_classes # --> output_nc tasks = opt.tasks # from .dense_decoders_multitask_auto import denseUnet121 from .dense_decoders_multitask_auto import denseUnet121 netG = denseUnet121(pretrained=pretrained, input_nc=input_nc, outputs_nc=opt.outputs_nc, init_method=init_method, use_dropout=use_dropout, use_skips=use_skips, d_block_type=d_block_type, num_classes=n_classes, tasks=tasks, type_net=net_architecture, mtl_method=opt.mtl_method) # else: # raise NotImplementedError('Generator model name [%s] is not recognized' % net_architecture) # print number of parameters of the network # print_network(netG) print_n_parameters_network(netG) # st() if len(gpu_ids) > 0: netG.cuda(device_id=gpu_ids[0]) if not pretrained: w_init.init_weights(netG, init_method) return netG
Example #27
Source File: vocoder_old2.py From TTS-Cube with Apache License 2.0 | 5 votes |
def forward(self, mgc, noise, tail=None): conditioning = self.conditioning(torch.Tensor(mgc).to(device).reshape(len(mgc), 1, 1, self.MGC_SIZE)) conditioning = conditioning.reshape(len(mgc) * self.UPSAMPLE_SIZE, self.MGC_SIZE) prepend = torch.tensor(noise[:self.RECEPTIVE_FIELD]).to(device) prev_x = torch.tensor(noise).to(device) new_tail = [] for iStack in range(self.NUM_STACKS): # prepare the input x_list = [] for ii in range(len(prev_x) - self.RECEPTIVE_FIELD): x_list.append(prev_x[ii:ii + self.RECEPTIVE_FIELD]) # from ipdb import set_trace # set_trace() x = torch.stack(x_list) x = x.reshape(len(mgc) * self.UPSAMPLE_SIZE, 1, x_list[0].shape[0]) pre = self.convolutions[iStack](x, conditioning) pre = pre.reshape(pre.shape[0], pre.shape[1]) pre = torch.relu(self.pre_output[iStack](pre)) mean = self.mean_layer[iStack](pre) logvar = self.stdev_layer[iStack](pre) prev_x = self.reparameterize(mean, logvar, prev_x[self.RECEPTIVE_FIELD:].reshape(mean.shape[0], mean.shape[1])) new_tail.append(prev_x[-self.RECEPTIVE_FIELD:].detach()) if iStack != self.NUM_STACKS - 1: if tail is None: prev_x = torch.cat((prepend, prev_x.reshape((prev_x.shape[0])))) else: prev_x = torch.cat((tail[iStack].reshape(tail[iStack].shape[0]), prev_x.reshape((prev_x.shape[0])))) return prev_x, mean, logvar, new_tail
Example #28
Source File: ln_lstm2.py From Multi-channel-speech-extraction-using-DNN with MIT License | 5 votes |
def __call__(self, inputs, state, scope=None): """Long short-term memory cell (LSTM).""" with tf.variable_scope(scope or type(self).__name__): c, h = state # change bias argument to False since LN will add bias via shift concat = tf.nn.rnn_cell._linear( [inputs, h], 4 * self._num_units, False) # ipdb.set_trace() i, j, f, o = tf.split(1, 4, concat) # add layer normalization to each gate i = ln(i, scope='i/') j = ln(j, scope='j/') f = ln(f, scope='f/') o = ln(o, scope='o/') new_c = (c * tf.nn.sigmoid(f + self._forget_bias) + tf.nn.sigmoid(i) * self._activation(j)) # add layer_normalization in calculation of new hidden state new_h = self._activation( ln(new_c, scope='new_h/')) * tf.nn.sigmoid(o) new_state = tf.nn.rnn_cell.LSTMStateTuple(new_c, new_h) return new_h, new_state
Example #29
Source File: __init__.py From attention-lvcsr with MIT License | 5 votes |
def ipdb_breakpoint(x): """A simple hook function for :func:`put_hook` that runs ipdb. Parameters ---------- x : :class:`~numpy.ndarray` The value of the hooked variable. """ import ipdb ipdb.set_trace()
Example #30
Source File: Loss.py From reversible-rnn with MIT License | 5 votes |
def _compute_loss(self, batch, output, target): # ipdb.set_trace() # scores = self.generator(self._bottle(output)) scores = self.generator(output.view(-1, output.size(2))) # Just doing _bottle w/o calling function gtruth = target.view(-1) # if self.confidence < 1: # tdata = gtruth.data # mask = torch.nonzero(tdata.eq(self.padding_idx)).squeeze() # likelihood = torch.gather(scores.data, 1, tdata.unsqueeze(1)) # tmp_ = self.one_hot.repeat(gtruth.size(0), 1) # tmp_.scatter_(1, tdata.unsqueeze(1), self.confidence) # if mask.dim() > 0: # likelihood.index_fill_(0, mask, 0) # tmp_.index_fill_(0, mask, 0) # gtruth = Variable(tmp_, requires_grad=False) # loss = self.criterion(scores, gtruth) weight = torch.ones(self.tgt_vocab_len).cuda() weight[self.padding_idx] = 0 loss = F.nll_loss(scores, gtruth, weight=weight, size_average=False) # , ignore_index=-100, reduce=None, reduction='elementwise_mean') # if self.confidence < 1: # loss_data = - likelihood.sum(0) # else: # loss_data = loss.data.clone() loss_data = loss.data.clone() stats = self._stats(loss_data, scores.data, target.view(-1).data) return loss, stats