Python progressbar.Bar() Examples

The following are 30 code examples of progressbar.Bar(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module progressbar , or try the search function .
Example #1
Source File: progress.py    From desmod with MIT License 6 votes vote down vote up
def _get_progressbar_widgets(
    sim_index: Optional[int], timescale: TimeValue, know_stop_time: bool
) -> List[progressbar.widgets.WidgetBase]:
    widgets = []

    if sim_index is not None:
        widgets.append(f'Sim {sim_index:3}|')

    magnitude, units = timescale
    if magnitude == 1:
        sim_time_format = f'%(value)6.0f {units}|'
    else:
        sim_time_format = f'{magnitude}x%(value)6.0f {units}|'
    widgets.append(progressbar.FormatLabel(sim_time_format))

    widgets.append(progressbar.Percentage())

    if know_stop_time:
        widgets.append(progressbar.Bar())
    else:
        widgets.append(progressbar.BouncingBar())

    widgets.append(progressbar.ETA())

    return widgets 
Example #2
Source File: geo_heatmap.py    From geo-heatmap with MIT License 6 votes vote down vote up
def loadKMLData(self, file_name, date_range):
        """Loads the Google location data from the given KML file.

        Arguments:
            file_name {string or file} -- The name of the KML file
                (or an open file-like object) with the Google location data.
            date_range {tuple} -- A tuple containing the min-date and max-date.
                e.g.: (None, None), (None, '2019-01-01'), ('2017-02-11'), ('2019-01-01')
        """
        xmldoc = minidom.parse(file_name)
        gxtrack = xmldoc.getElementsByTagName("gx:coord")
        when = xmldoc.getElementsByTagName("when")
        w = [Bar(), Percentage(), " ", ETA()]

        with ProgressBar(max_value=len(gxtrack), widgets=w) as pb:
            for i, number in enumerate(gxtrack):
                loc = (number.firstChild.data).split()
                coords = (round(float(loc[1]), 6), round(float(loc[0]), 6))
                date = when[i].firstChild.data
                if dateInRange(date[:10], date_range):
                    self.updateCoord(coords)
                pb.update(i) 
Example #3
Source File: Utils_Video.py    From Tensorflow_Object_Tracking_Video with MIT License 6 votes vote down vote up
def extract_frames(vid_path, video_perc):
    list=[]
    frames=[]
    # Opening & Reading the Video
    print("Opening File Video:%s " % vid_path)
    vidcap = cv2.VideoCapture(vid_path)
    if not vidcap.isOpened():
        print "could Not Open :",vid_path
        return
    print("Opened File Video:%s " % vid_path)
    print("Start Reading File Video:%s " % vid_path)
    image = vidcap.read()
    total = int((vidcap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)/100)*video_perc)
    print("%d Frames to Read"%total)
    progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
    for i in progress(range(0,total)):
        list.append("frame%d.jpg" % i)
        frames.append(image)
        image = vidcap.read()
    print("Finish Reading File Video:%s " % vid_path)
    return frames, list 
Example #4
Source File: geo_heatmap.py    From geo-heatmap with MIT License 6 votes vote down vote up
def loadGPXData(self, file_name, date_range):
        """Loads location data from the given GPX file.

        Arguments:
            file_name {string or file} -- The name of the GPX file
                (or an open file-like object) with the GPX data.
            date_range {tuple} -- A tuple containing the min-date and max-date.
                e.g.: (None, None), (None, '2019-01-01'), ('2017-02-11'), ('2019-01-01')
        """
        xmldoc = minidom.parse(file_name)
        gxtrack = xmldoc.getElementsByTagName("trkpt")
        w = [Bar(), Percentage(), " ", ETA()]

        with ProgressBar(max_value=len(gxtrack), widgets=w) as pb:
            for i, trkpt in enumerate(gxtrack):
                lat = trkpt.getAttribute("lat")
                lon = trkpt.getAttribute("lon")
                coords = (round(float(lat), 6), round(float(lon), 6))
                date = trkpt.getElementsByTagName("time")[0].firstChild.data
                if dateInRange(date[:10], date_range):
                    self.updateCoord(coords)
                pb.update(i) 
Example #5
Source File: dataset.py    From zhusuan with MIT License 6 votes vote down vote up
def show_progress(block_num, block_size, total_size):
    global pbar

    if pbar is None:
        if total_size > 0:
            prefixes = ('', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi', 'Yi')
            power = min(int(math.log(total_size, 2) / 10), len(prefixes) - 1)
            scaled = float(total_size) / (2 ** (10 * power))
            total_size_str = '{:.1f} {}B'.format(scaled, prefixes[power])
            try:
                marker = '█'
            except UnicodeEncodeError:
                marker = '*'
            widgets = [
                progressbar.Percentage(),
                ' ', progressbar.DataSize(),
                ' / ', total_size_str,
                ' ', progressbar.Bar(marker=marker),
                ' ', progressbar.ETA(),
                ' ', progressbar.AdaptiveTransferSpeed(),
            ]
            pbar = progressbar.ProgressBar(widgets=widgets,
                                           max_value=total_size)
        else:
            widgets = [
                progressbar.DataSize(),
                ' ', progressbar.Bar(marker=progressbar.RotatingMarker()),
                ' ', progressbar.Timer(),
                ' ', progressbar.AdaptiveTransferSpeed(),
            ]
            pbar = progressbar.ProgressBar(widgets=widgets,
                                           max_value=progressbar.UnknownLength)

    downloaded = block_num * block_size
    if downloaded < total_size:
        pbar.update(downloaded)
    else:
        pbar.finish()
        pbar = None 
Example #6
Source File: Utils_Video.py    From Tensorflow_Object_Tracking_Video with MIT License 6 votes vote down vote up
def make_tracked_video(out_vid_path, labeled_video_frames):

    if labeled_video_frames[0] is not None:

        img = cv2.imread(labeled_video_frames[0], True)
        print "Reading Filename: %s"%labeled_video_frames[0]
        h, w = img.shape[:2]
        print "Video Size: width: %d height: %d"%(h, w)
        fourcc = cv2.cv.CV_FOURCC('m', 'p', '4', 'v')
        out = cv2.VideoWriter(out_vid_path,fourcc, 20.0, (w, h), True)
        print("Start Making File Video:%s " % out_vid_path)
        print("%d Frames to Compress"%len(labeled_video_frames))
        progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
        for i in progress(range(0,len(labeled_video_frames))):
            if utils_image.check_image_with_pil(labeled_video_frames[i]):
                out.write(img)
                img = cv2.imread(labeled_video_frames[i], True)
        out.release()
        print("Finished Making File Video:%s " % out_vid_path) 
Example #7
Source File: data_handler.py    From cortex with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def reset(self, mode, make_pbar=True, string=''):
        self.mode = mode
        self.u = 0

        if make_pbar:
            widgets = [string, Timer(), ' | ',
                       Percentage(), ' | ', ETA(), Bar()]
            if len([len(loader[self.mode]) for loader
                    in self.loaders.values()]) == 0:
                maxval = 1000
            else:
                maxval = min(len(loader[self.mode])
                             for loader in self.loaders.values())
            self.pbar = ProgressBar(widgets=widgets, maxval=maxval).start()
        else:
            self.pbar = None

        sources = self.loaders.keys()
        self.iterators = dict((source, self.make_iterator(source))
                              for source in sources) 
Example #8
Source File: _windows.py    From microk8s with Apache License 2.0 6 votes vote down vote up
def _init_progress_bar(total_length, destination, message=None):
    if not message:
        message = "Downloading {!r}".format(os.path.basename(destination))

    valid_length = total_length and total_length > 0

    if valid_length and is_dumb_terminal():
        widgets = [message, " ", Percentage()]
        maxval = total_length
    elif valid_length and not is_dumb_terminal():
        widgets = [message, Bar(marker="=", left="[", right="]"), " ", Percentage()]
        maxval = total_length
    elif not valid_length and is_dumb_terminal():
        widgets = [message]
        maxval = UnknownLength
    else:
        widgets = [message, AnimatedMarker()]
        maxval = UnknownLength

    return ProgressBar(widgets=widgets, maxval=maxval) 
Example #9
Source File: timing.py    From e2e-nlg-challenge-2017 with Apache License 2.0 6 votes vote down vote up
def create_progress_bar(dynamic_msg=None):
    # Taken from Andreas Rueckle.
    # usage:
    #   bar = _create_progress_bar('loss')
    #   L = []
    #   for i in bar(iterable):
    #       ...
    #       L.append(...)
    #
    #   bar.dynamic_messages['loss'] = np.mean(L)
    widgets = [
        ' [batch ', progressbar.SimpleProgress(), '] ',
        progressbar.Bar(),
        ' (', progressbar.ETA(), ') '
    ]
    if dynamic_msg is not None:
        widgets.append(progressbar.DynamicMessage(dynamic_msg))
    return progressbar.ProgressBar(widgets=widgets) 
Example #10
Source File: geo_heatmap.py    From geo-heatmap with MIT License 6 votes vote down vote up
def loadJSONData(self, json_file, date_range):
        """Loads the Google location data from the given json file.

        Arguments:
            json_file {file} -- An open file-like object with JSON-encoded
                Google location data.
            date_range {tuple} -- A tuple containing the min-date and max-date.
                e.g.: (None, None), (None, '2019-01-01'), ('2017-02-11'), ('2019-01-01')
        """
        data = json.load(json_file)
        w = [Bar(), Percentage(), " ", ETA()]
        with ProgressBar(max_value=len(data["locations"]), widgets=w) as pb:
            for i, loc in enumerate(data["locations"]):
                if "latitudeE7" not in loc or "longitudeE7" not in loc:
                    continue
                coords = (round(loc["latitudeE7"] / 1e7, 6),
                           round(loc["longitudeE7"] / 1e7, 6))

                if timestampInRange(loc["timestampMs"], date_range):
                    self.updateCoord(coords)
                pb.update(i) 
Example #11
Source File: utils.py    From HoneyBot with MIT License 6 votes vote down vote up
def capture_on_interface(interface, name, timeout=60):
    """
    :param interface: The name of the interface on which to capture traffic
    :param name: The name of the capture file
    :param timeout: A limit in seconds specifying how long to capture traffic
    """

    if timeout < 15:
        logger.error("Timeout must be over 15 seconds.")
        return
    if not sys.warnoptions:
        warnings.simplefilter("ignore")
    start = time.time()
    widgets = [
        progressbar.Bar(marker=progressbar.RotatingMarker()),
        ' ',
        progressbar.FormatLabel('Packets Captured: %(value)d'),
        ' ',
        progressbar.Timer(),
    ]
    progress = progressbar.ProgressBar(widgets=widgets)
    capture = pyshark.LiveCapture(interface=interface, output_file=os.path.join('tmp', name))
    pcap_size = 0
    for i, packet in enumerate(capture.sniff_continuously()):
        progress.update(i)
        if os.path.getsize(os.path.join('tmp', name)) != pcap_size:
            pcap_size = os.path.getsize(os.path.join('tmp', name))
        if not isinstance(packet, pyshark.packet.packet.Packet):
            continue
        if time.time() - start > timeout:
            break
        if pcap_size > const.PT_MAX_BYTES:
            break
    capture.clear()
    capture.close()
    return pcap_size 
Example #12
Source File: knn_missing_data.py    From Generative-ConvACs with MIT License 6 votes vote down vote up
def knn_masked_data(trX,trY,missing_data_dir, input_shape, k):
    
    raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str)
    raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str)
    # Using 'brute' method since we only want to do one query per classifier
    # so this will be quicker as it avoids overhead of creating a search tree
    knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k)
    prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1)))
    total_images = raw_im_data.shape[0]
    pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start()
    for i in range(total_images):
        mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape))
        mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations
        v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape))
        rep_mask = np.tile(mask,(trX.shape[0],1))
        # Corrupt whole training set according to the current mask
        corr_trX = np.multiply(trX, rep_mask)        
        knn_m.fit(corr_trX, trY)
        prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1))
        pbar.update(i)
    pbar.finish()
    return prob_Y_hat 
Example #13
Source File: bar_logger.py    From karonte with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def set_tot_elaborations(self, tot_elaborations):
        """
        Set the total number of elaborations

        :param tot_elaborations: total number of elaborations
        :return: None
        """

        widgets = [
            progressbar.Percentage(),
            ' (', progressbar.SimpleProgress(), ') ',

            progressbar.Bar(),
            progressbar.Timer(),
            ' ETC: ', self._ETC, ' '
        ]
        self._bar = progressbar.ProgressBar(redirect_stderr=True, max_value=tot_elaborations, widgets=widgets)
        self._bar.start()
        self._tot_elaborations = tot_elaborations 
Example #14
Source File: eval_script.py    From Tensorflow_Object_Tracking_Video with MIT License 6 votes vote down vote up
def save_best_iou(val_bbox, output_bbox):

    progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
    count_best_bbox=0
    len_val_bbox=len(val_bbox)
    len_output_bbox=len(output_bbox)
    count_missing_boxes=0
    with open("best_iou.txt", 'a') as d:
        for i in progress(range(0, len(val_bbox))):
            for rect in val_bbox[i].rects:
                if(len(output_bbox[i].rects)>0):
                    selected=multiclass_rectangle.pop_max_iou(output_bbox[i].rects,rect)
                    count_best_bbox=count_best_bbox+1
                    d.write(str(val_bbox[i].frame)+' '+str(rect.label_chall)+ ' 0.5 '+str(selected.x1)+' '+str(selected.y1)+' '+str(selected.x2)+' '+str(selected.y2) + os.linesep)
                else:
                    count_missing_boxes=count_missing_boxes+1
    print "Total Frame Number: "+ str(len_val_bbox) 
    print "Total Output Bounding Boxes: "+ str(len_output_bbox) 
    print "Total Best Bounding Boxes: "+ str(count_best_bbox) 
    print "Total Missing Bounding Boxes: "+ str(count_missing_boxes) 
    print "Total False Positive Bounding Boxes: "+ str(len_output_bbox-count_best_bbox) 
    print "BBox/Frame Number: "+ str(float(count_best_bbox)/float(len_val_bbox)) 
    print "Missing BBox/Frame Number: "+ str(float(float(count_missing_boxes)/float(len_val_bbox)))
    print "False Positive BBox/Frame Number: "+ str(float(float(len_output_bbox-count_best_bbox)/float(len_val_bbox))) 
Example #15
Source File: eval_script.py    From Tensorflow_Object_Tracking_Video with MIT License 6 votes vote down vote up
def save_best_overlap(val_bbox, output_bbox):

    progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
    count_best_bbox=0
    len_val_bbox=len(val_bbox)
    len_output_bbox=len(output_bbox)
    count_missing_boxes=0
    with open("best_overlap.txt", 'a') as d:
        for i in progress(range(0, len(val_bbox))):
            for rect in val_bbox[i].rects:
                if(len(output_bbox[i].rects)>0):
                    selected=multiclass_rectangle.pop_max_overlap(output_bbox[i].rects,rect)
                    count_best_bbox=count_best_bbox+1
                    d.write(str(val_bbox[i].frame)+' '+str(rect.label_chall)+ ' 0.5 '+str(selected.x1)+' '+str(selected.y1)+' '+str(selected.x2)+' '+str(selected.y2) + os.linesep)
                else:
                    count_missing_boxes=count_missing_boxes+1
    print "Total Frame Number: "+ str(len_val_bbox) 
    print "Total Output Bounding Boxes: "+ str(len_output_bbox) 
    print "Total Best Bounding Boxes: "+ str(count_best_bbox) 
    print "Total Missing Bounding Boxes: "+ str(count_missing_boxes) 
    print "Total False Positive Bounding Boxes: "+ str(len_output_bbox-count_best_bbox) 
    print "BBox/Frame Number: "+ str(float(count_best_bbox)/float(len_val_bbox)) 
    print "Missing BBox/Frame Number: "+ str(float(float(count_missing_boxes)/float(len_val_bbox)))
    print "False Positive BBox/Frame Number: "+ str(float(float(len_output_bbox-count_best_bbox)/float(len_val_bbox))) 
Example #16
Source File: progress.py    From desmod with MIT License 6 votes vote down vote up
def _get_overall_pbar(
    num_simulations: int, max_width: int, fd: IO
) -> progressbar.ProgressBar:
    pbar = progressbar.ProgressBar(
        fd=fd,
        min_value=0,
        max_value=num_simulations,
        widgets=[
            progressbar.FormatLabel('%(value)s of %(max_value)s '),
            'simulations (',
            progressbar.Percentage(),
            ') ',
            progressbar.Bar(),
            progressbar.ETA(),
        ],
    )

    if max_width and pbar.term_width > max_width:
        pbar.term_width = max_width

    return pbar 
Example #17
Source File: fastboot_debug.py    From luci-py with Apache License 2.0 6 votes vote down vote up
def KwargHandler(kwargs, argspec):

  if 'info_cb' in argspec.args:
    # Use an unbuffered version of stdout.
    def InfoCb(message):
      if not message.message:
        return
      sys.stdout.write('%s: %s\n' % (message.header, message.message))
      sys.stdout.flush()
    kwargs['info_cb'] = InfoCb
  if 'progress_callback' in argspec.args:
    bar = progressbar.ProgessBar(
        widgets=[progressbar.Bar(), progressbar.Percentage()])
    bar.start()
    def SetProgress(current, total):
      bar.update(current / total * 100.0)
      if current == total:
        bar.finish()
    kwargs['progress_callback'] = SetProgress 
Example #18
Source File: download.py    From chainer with MIT License 6 votes vote down vote up
def download(url, dst_file_path):
    # Download a file, showing progress
    bar_wrap = [None]

    def reporthook(count, block_size, total_size):
        bar = bar_wrap[0]
        if bar is None:
            bar = progressbar.ProgressBar(
                maxval=total_size,
                widgets=[
                    progressbar.Percentage(),
                    ' ',
                    progressbar.Bar(),
                    ' ',
                    progressbar.FileTransferSpeed(),
                    ' | ',
                    progressbar.ETA(),
                ])
            bar.start()
            bar_wrap[0] = bar
        bar.update(min(count * block_size, total_size))

    request.urlretrieve(url, dst_file_path, reporthook=reporthook) 
Example #19
Source File: search.py    From thingscoop with MIT License 6 votes vote down vote up
def label_video(filename, classifier, sample_rate=1, recreate_index=False):
    index_filename = generate_index_path(filename, classifier.model)
    
    if os.path.exists(index_filename) and not recreate_index:
        return read_index_from_path(index_filename)
    
    temp_frame_dir, frames = extract_frames(filename, sample_rate=sample_rate)

    timed_labels = []

    widgets=["Labeling {}: ".format(filename), Percentage(), ' ', Bar(), ' ', ETA()]
    pbar = ProgressBar(widgets=widgets, maxval=len(frames)).start()

    for index, frame in enumerate(frames):
        pbar.update(index)
        labels = classifier.classify_image(frame)
        if not len(labels):
            continue
        t = (1./sample_rate) * index
        timed_labels.append((t, labels))
    
    shutil.rmtree(temp_frame_dir)
    save_index_to_path(index_filename, timed_labels)
    
    return timed_labels 
Example #20
Source File: models.py    From thingscoop with MIT License 6 votes vote down vote up
def download_model(model):
    if model_in_cache(model): return
    model_url = get_model_url(model)
    tmp_zip = tempfile.NamedTemporaryFile(suffix=".zip")
    prompt = "Downloading model {}".format(model)
    def cb(count, block_size, total_size):
        global progress_bar
        if not progress_bar:
            widgets = [prompt, Percentage(), ' ', Bar(), ' ', FileTransferSpeed(), ' ', ETA()]
            progress_bar = ProgressBar(widgets=widgets, maxval=int(total_size)).start()
        progress_bar.update(min(total_size, count * block_size))
    urllib.urlretrieve(model_url, tmp_zip.name, cb)
    z = zipfile.ZipFile(tmp_zip)
    out_path = get_model_local_path(model)
    try:
        os.mkdir(out_path)
    except:
        pass
    for name in z.namelist():
        if name.startswith("_"): continue
        z.extract(name, out_path) 
Example #21
Source File: __init__.py    From attention-lvcsr with MIT License 6 votes vote down vote up
def create_bar(self):
        """Create a new progress bar.

        Calls `self.get_iter_per_epoch()`, selects an appropriate
        set of widgets and creates a ProgressBar.

        """
        iter_per_epoch = self.get_iter_per_epoch()
        epochs_done = self.main_loop.log.status['epochs_done']

        if iter_per_epoch is None:
            widgets = ["Epoch {}, step ".format(epochs_done),
                       progressbar.Counter(), ' ',
                       progressbar.BouncingBar(), ' ',
                       progressbar.Timer()]
            iter_per_epoch = progressbar.UnknownLength
        else:
            widgets = ["Epoch {}, step ".format(epochs_done),
                       progressbar.Counter(),
                       ' (', progressbar.Percentage(), ') ',
                       progressbar.Bar(), ' ',
                       progressbar.Timer(), ' ', progressbar.ETA()]

        return progressbar.ProgressBar(widgets=widgets,
                                       max_value=iter_per_epoch) 
Example #22
Source File: download.py    From AmusingPythonCodes with MIT License 6 votes vote down vote up
def prepare_h5py(train_image, train_label, test_image, test_label, data_dir, shape=None):
    image = np.concatenate((train_image, test_image), axis=0).astype(np.uint8)
    label = np.concatenate((train_label, test_label), axis=0).astype(np.uint8)
    print('Preprocessing data...')
    bar = progressbar.ProgressBar(maxval=100, widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
    bar.start()
    f = h5py.File(os.path.join(data_dir, 'data.hy'), 'w')
    with open(os.path.join(data_dir, 'id.txt'), 'w') as data_id:
        for i in range(image.shape[0]):
            if i % (image.shape[0] / 100) == 0:
                bar.update(i / (image.shape[0] / 100))
            grp = f.create_group(str(i))
            data_id.write('{}\n'.format(i))
            if shape:
                grp['image'] = np.reshape(image[i], shape, order='F')
            else:
                grp['image'] = image[i]
            label_vec = np.zeros(10)
            label_vec[label[i] % 10] = 1
            grp['label'] = label_vec.astype(np.bool)
        bar.finish()
    f.close()
    return 
Example #23
Source File: VID_yolo.py    From Tensorflow_Object_Tracking_Video with MIT License 5 votes vote down vote up
def print_YOLO_DET_result(det_results_list,folder_path_summary_result, file_path_summary_result ):
    results_list=[]
    if not os.path.exists(folder_path_summary_result):
        os.makedirs(folder_path_summary_result)
        print("Created Folder: %s"%folder_path_summary_result)
    print("Starting Loading Results ")
    progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
    names=['class_name', 'x1','y1','x2','y2','score']
    df = pandas.DataFrame(columns=names)
    mean=0.0
    with open(file_path_summary_result, "w") as out_file:
        for i in progress(range(0,len(det_results_list))):
        #df.append(pandas.read_csv(det_results_list[i], sep=',',names=names, encoding="utf8"))
        #results_list.append(pandas.read_csv(det_results_list[i], sep=',',names=names, encoding="utf8"))
            for line in open(det_results_list[i], "r"):
                df.loc[i] =tuple(line.strip().split(','))
                mean=mean+float(df.loc[i].score)
                out_file.write(str(tuple(line.strip().split(',')))+ os.linesep)
    print("Finished Loading Results ")
    print("Computing Final Mean Reasults..")
    print "Class: " + df.class_name.max()
    print "Max Value: " + df.score.max()
    print "Min Value: " + df.score.min()
    print "Avg Value: " + str(mean/len(df))
    return

######### MAIN ############### 
Example #24
Source File: utils.py    From dqa-net with Apache License 2.0 5 votes vote down vote up
def get_pbar(num, prefix=""):
    assert isinstance(prefix, str)
    pbar = pb.ProgressBar(widgets=[prefix, pb.Percentage(), pb.Bar(), pb.ETA()], maxval=num)
    return pbar 
Example #25
Source File: convert_fc_to_tfrecords.py    From GapFlyt with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def convert_dataset(indices, name):
    # Open a TFRRecordWriter
    filename = os.path.join(FLAGS.out, name + '.tfrecords')
    writeOpts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
    writer = tf.python_io.TFRecordWriter(filename, options=writeOpts)

    # Load each data sample (image_a, image_b, flow) and write it to the TFRecord
    count = 0
    pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=len(indices)).start()
    for i in indices:
        image_a_path = os.path.join(FLAGS.data_dir, '%05d_img1.ppm' % (i + 1))
        image_b_path = os.path.join(FLAGS.data_dir, '%05d_img2.ppm' % (i + 1))
        flow_path = os.path.join(FLAGS.data_dir, '%05d_flow.flo' % (i + 1))

        image_a = imread(image_a_path)
        image_b = imread(image_b_path)

        # Convert from RGB -> BGR
        image_a = image_a[..., [2, 1, 0]]
        image_b = image_b[..., [2, 1, 0]]

        # Scale from [0, 255] -> [0.0, 1.0]
        image_a = image_a / 255.0
        image_b = image_b / 255.0

        image_a_raw = image_a.tostring()
        image_b_raw = image_b.tostring()
        flow_raw = open_flo_file(flow_path).tostring()

        example = tf.train.Example(features=tf.train.Features(feature={
            'image_a': _bytes_feature(image_a_raw),
            'image_b': _bytes_feature(image_b_raw),
            'flow': _bytes_feature(flow_raw)}))
        writer.write(example.SerializeToString())
        pbar.update(count + 1)
        count += 1
    writer.close() 
Example #26
Source File: es2csv.py    From es2csv with Apache License 2.0 5 votes vote down vote up
def write_to_csv(self):
        if self.num_results > 0:
            self.num_results = sum(1 for line in codecs.open(self.tmp_file, mode='r', encoding='utf-8'))
            if self.num_results > 0:
                output_file = codecs.open(self.opts.output_file, mode='a', encoding='utf-8')
                csv_writer = csv.DictWriter(output_file, fieldnames=self.csv_headers)
                csv_writer.writeheader()
                timer = 0
                widgets = ['Write to csv ',
                           progressbar.Bar(left='[', marker='#', right=']'),
                           progressbar.FormatLabel(' [%(value)i/%(max)i] ['),
                           progressbar.Percentage(),
                           progressbar.FormatLabel('] [%(elapsed)s] ['),
                           progressbar.ETA(), '] [',
                           progressbar.FileTransferSpeed(unit='lines'), ']'
                           ]
                bar = progressbar.ProgressBar(widgets=widgets, maxval=self.num_results).start()

                for line in codecs.open(self.tmp_file, mode='r', encoding='utf-8'):
                    timer += 1
                    bar.update(timer)
                    csv_writer.writerow(json.loads(line))
                output_file.close()
                bar.finish()
            else:
                print('There is no docs with selected field(s): {}.'.format(','.join(self.opts.fields)))
            os.remove(self.tmp_file) 
Example #27
Source File: download.py    From Group-Normalization-Tensorflow with MIT License 5 votes vote down vote up
def prepare_h5py(train_image, train_label, test_image,
                 test_label, data_dir, num_class=10, shape=None):

    image = np.concatenate((train_image, test_image), axis=0).astype(np.uint8)
    label = np.concatenate((train_label, test_label), axis=0).astype(np.uint8)

    print('Preprocessing data...')

    import progressbar
    bar = progressbar.ProgressBar(
        maxval=100, widgets=[progressbar.Bar('=', '[', ']'),
                             ' ', progressbar.Percentage()]
    )
    bar.start()

    f = h5py.File(os.path.join(data_dir, 'data.hdf5'), 'w')
    with open(os.path.join(data_dir, 'id.txt'), 'w') as data_id:
        for i in range(image.shape[0]):

            if i % (image.shape[0] / 100) == 0:
                bar.update(i / (image.shape[0] / 100))

            grp = f.create_group(str(i))
            data_id.write('{}\n'.format(i))
            if shape:
                grp['image'] = np.reshape(image[i], shape, order='F')
            else:
                grp['image'] = image[i]
            label_vec = np.zeros(num_class)
            label_vec[label[i] % num_class] = 1
            grp['label'] = label_vec.astype(np.bool)
        bar.finish()
    f.close()
    return 
Example #28
Source File: download.py    From SSGAN-Tensorflow with MIT License 5 votes vote down vote up
def prepare_h5py(train_image, train_label, test_image, test_label, data_dir, shape=None):

    image = np.concatenate((train_image, test_image), axis=0).astype(np.uint8)
    label = np.concatenate((train_label, test_label), axis=0).astype(np.uint8)

    print('Preprocessing data...')

    import progressbar
    bar = progressbar.ProgressBar(maxval=100,
                                  widgets=[progressbar.Bar('=', '[', ']'), ' ',
                                           progressbar.Percentage()])
    bar.start()

    f = h5py.File(os.path.join(data_dir, 'data.hdf5'), 'w')
    data_id = open(os.path.join(data_dir,'id.txt'), 'w')
    for i in range(image.shape[0]):

        if i%(image.shape[0]/100)==0:
            bar.update(i/(image.shape[0]/100))

        grp = f.create_group(str(i))
        data_id.write(str(i)+'\n')
        if shape:
            grp['image'] = np.reshape(image[i], shape, order='F')
        else:
            grp['image'] = image[i]
        label_vec = np.zeros(10)
        label_vec[label[i]%10] = 1
        grp['label'] = label_vec.astype(np.bool)
    bar.finish()
    f.close()
    data_id.close()
    return 
Example #29
Source File: baidufuse.py    From baidu-fuse with GNU General Public License v2.0 5 votes vote down vote up
def __call__(self, *args, **kwargs):
        if self.first_call:
            self.widgets = [progressbar.Percentage(), ' ', progressbar.Bar(marker=progressbar.RotatingMarker('>')),
                            ' ', progressbar.FileTransferSpeed()]
            self.pbar = progressbar.ProgressBar(widgets=self.widgets, maxval=kwargs['size']).start()
            self.first_call = False

        if kwargs['size'] <= kwargs['progress']:
            self.pbar.finish()
        else:
            self.pbar.update(kwargs['progress']) 
Example #30
Source File: eval_script.py    From Tensorflow_Object_Tracking_Video with MIT License 5 votes vote down vote up
def val_to_data(source):
    text_lines=[]
    frames_list=[]
    frame = None
    progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
    with open(source, 'r') as s: 
        for line in s:
            id_frame, id_class, conf, xmin, ymin, xmax, ymax = line.strip().split(' ')
            text_lines.append((id_frame, id_class, conf, xmin, ymin, xmax, ymax))
    for i in range(0, len(text_lines)):
        if frame is None:
            frame = fm.Frame_Info()
            frame.frame= text_lines[i][0]
            rect= multiclass_rectangle.Rectangle_Multiclass()
            # Not all the inserted values are really used
            rect.load_labeled_rect(0, text_lines[i][2], text_lines[i][2], text_lines[i][3], text_lines[i][4], text_lines[i][5], text_lines[i][6], text_lines[i][1], text_lines[i][1], text_lines[i][1])
            frame.append_labeled_rect(rect)
        else :
            if frame.frame == text_lines[i][0]:
                rect= multiclass_rectangle.Rectangle_Multiclass()
                # Not all the inserted values are really used
                rect.load_labeled_rect(0, text_lines[i][2], text_lines[i][2], text_lines[i][3], text_lines[i][4], text_lines[i][5], text_lines[i][6], text_lines[i][1], text_lines[i][1], text_lines[i][1])
                frame.append_labeled_rect(rect)
            else :
                frames_list.append(frame)
                frame = fm.Frame_Info()
                frame.frame= text_lines[i][0]
                rect= multiclass_rectangle.Rectangle_Multiclass()
                # Not all the inserted values are really used
                rect.load_labeled_rect(0, text_lines[i][2], text_lines[i][2], text_lines[i][3], text_lines[i][4], text_lines[i][5], text_lines[i][6], text_lines[i][1], text_lines[i][1], text_lines[i][1])
                frame.append_labeled_rect(rect)
    frames_list.append(frame)
    return frames_list