Python matplotlib.ticker.MaxNLocator() Examples
The following are 30
code examples of matplotlib.ticker.MaxNLocator().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.ticker
, or try the search function
.
Example #1
Source File: test_constrainedlayout.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_constrained_layout6(): 'Test constrained_layout for nested gridspecs' fig = plt.figure(constrained_layout=True) gs = fig.add_gridspec(1, 2, figure=fig) gsl = gs[0].subgridspec(2, 2) gsr = gs[1].subgridspec(1, 2) axsl = [] for gs in gsl: ax = fig.add_subplot(gs) axsl += [ax] example_plot(ax, fontsize=12) ax.set_xlabel('x-label\nMultiLine') axsr = [] for gs in gsr: ax = fig.add_subplot(gs) axsr += [ax] pcm = example_pcolor(ax, fontsize=12) fig.colorbar(pcm, ax=axsr, pad=0.01, shrink=0.99, location='bottom', ticks=ticker.MaxNLocator(nbins=5))
Example #2
Source File: plot.py From espnet with Apache License 2.0 | 6 votes |
def _plot_and_save_attention(att_w, filename): """Plot and save an attention.""" # dynamically import matplotlib due to not found error from matplotlib.ticker import MaxNLocator import os d = os.path.dirname(filename) if not os.path.exists(d): os.makedirs(d) w, h = plt.figaspect(1.0 / len(att_w)) fig = plt.Figure(figsize=(w * 2, h * 2)) axes = fig.subplots(1, len(att_w)) if len(att_w) == 1: axes = [axes] for ax, aw in zip(axes, att_w): # plt.subplot(1, len(att_w), h) ax.imshow(aw, aspect="auto") ax.set_xlabel("Input") ax.set_ylabel("Output") ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) fig.tight_layout() return fig
Example #3
Source File: contour.py From neural-network-animation with MIT License | 6 votes |
def _autolev(self, z, N): """ Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. """ if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N + 1) zmax = self.zmax zmin = self.zmin lev = self.locator.tick_values(zmin, zmax) self._auto = True if self.filled: return lev # For line contours, drop levels outside the data range. return lev[(lev > zmin) & (lev < zmax)]
Example #4
Source File: contour.py From matplotlib-4-abaqus with MIT License | 6 votes |
def _autolev(self, z, N): """ Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. """ if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N + 1) zmax = self.zmax zmin = self.zmin lev = self.locator.tick_values(zmin, zmax) self._auto = True if self.filled: return lev # For line contours, drop levels outside the data range. return lev[(lev > zmin) & (lev < zmax)]
Example #5
Source File: plotter.py From ChainConsumer with MIT License | 6 votes |
def _plot_walk(self, ax, parameter, data, truth=None, extents=None, convolve=None, color=None, log_scale=False): # pragma: no cover if extents is not None: ax.set_ylim(extents) assert convolve is None or isinstance(convolve, int), "Convolve must be an integer pixel window width" x = np.arange(data.size) ax.set_xlim(0, x[-1]) ax.set_ylabel(parameter) if color is None: color = "#0345A1" ax.scatter(x, data, c=color, s=2, marker=".", edgecolors="none", alpha=0.5) max_ticks = self.parent.config["max_ticks"] if log_scale: ax.set_yscale("log") ax.yaxis.set_major_locator(LogLocator(numticks=max_ticks)) else: ax.yaxis.set_major_locator(MaxNLocator(max_ticks, prune="lower")) if convolve is not None: color2 = self.parent.color_finder.scale_colour(color, 0.5) filt = np.ones(convolve) / convolve filtered = np.convolve(data, filt, mode="same") ax.plot(x[:-1], filtered[:-1], ls=":", color=color2, alpha=1)
Example #6
Source File: colorbar.py From matplotlib-4-abaqus with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator)
Example #7
Source File: colorbar.py From Computable with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator)
Example #8
Source File: colorbar.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _get_ticker_locator_formatter(self): """ This code looks at the norm being used by the colorbar and decides what locator and formatter to use. If ``locator`` has already been set by hand, it just returns ``self.locator, self.formatter``. """ locator = self.locator formatter = self.formatter if locator is None: if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv / 10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = _ColorbarLogLocator(self) elif isinstance(self.norm, colors.SymLogNorm): # The subs setting here should be replaced # by logic in the locator. locator = ticker.SymmetricalLogLocator( subs=np.arange(1, 10), linthresh=self.norm.linthresh, base=10) else: if mpl.rcParams['_internal.classic_mode']: locator = ticker.MaxNLocator() else: locator = _ColorbarAutoLocator(self) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b, nbins=10) _log.debug('locator: %r', locator) return locator, formatter
Example #9
Source File: contour.py From Computable with MIT License | 6 votes |
def _autolev(self, z, N): """ Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. """ if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N + 1) zmax = self.zmax zmin = self.zmin lev = self.locator.tick_values(zmin, zmax) self._auto = True if self.filled: return lev # For line contours, drop levels outside the data range. return lev[(lev > zmin) & (lev < zmax)]
Example #10
Source File: plotting.py From tobac with BSD 3-Clause "New" or "Revised" License | 6 votes |
def make_map(axes): import matplotlib.ticker as mticker import cartopy.crs as ccrs from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER gl = axes.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2, color='gray', alpha=0.5, linestyle='-') axes.coastlines('10m') gl.xlabels_top = False gl.ylabels_right = False gl.xlocator = mticker.MaxNLocator(nbins=5,min_n_ticks=3,steps=None) gl.ylocator = mticker.MaxNLocator(nbins=5,min_n_ticks=3,steps=None) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER #gl.xlabel_style = {'size': 15, 'color': 'gray'} #gl.xlabel_style = {'color': 'red', 'weight': 'bold'} return axes
Example #11
Source File: utils.py From noise2noise-pytorch with MIT License | 6 votes |
def plot_per_epoch(ckpt_dir, title, measurements, y_label): """Plots stats (train/valid loss, avg PSNR, etc.).""" fig = plt.figure() ax = fig.add_subplot(111) ax.plot(range(1, len(measurements) + 1), measurements) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.set_xlabel('Epoch') ax.set_ylabel(y_label) ax.set_title(title) plt.tight_layout() fname = '{}.png'.format(title.replace(' ', '-').lower()) plot_fname = os.path.join(ckpt_dir, fname) plt.savefig(plot_fname, dpi=200) plt.close()
Example #12
Source File: assess_homopolymers.py From pomoxis with Mozilla Public License 2.0 | 6 votes |
def plot_relative_lengths(data, fname): # some panels will be empty for longer HPs so keep track of what lengths and bases are in each row/column rows = sorted(data['ref_len'].unique()) cols = sorted(data['q_base'].unique()) fig, axes = plt.subplots( ncols=len(cols), nrows=len(rows), sharex=True, figsize=(4 * len(cols), 2 * len(rows))) for rl, rl_df in data.groupby(['ref_len']): i = rows.index(rl) for qb, qb_df in rl_df.groupby('q_base'): j = cols.index(qb) ax = axes[i][j] ax.bar(qb_df['rel_len'], qb_df['count']) ax.set_title('{}{}'.format(qb, rl)) ax.xaxis.set_tick_params(which='both', labelbottom=True) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) for ax in axes[-1,:]: ax.set_xlabel('Query length relative to reference') for ax in axes[:, 0]: ax.set_ylabel('Counts') fig.tight_layout() fig.savefig(fname)
Example #13
Source File: colorbar.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator)
Example #14
Source File: graph_rmse.py From netflix with MIT License | 5 votes |
def get_figure_and_axes_for_feature_vs_learn(info): title = ('Features vs. Learning Rates ({train} to {test})\n {e} Epochs' .format(train=info.train_set_name, test=info.test_set_name, e=info.num_epochs)) figure = plt.figure() figure.canvas.set_window_title(title) axes = figure.add_subplot(111, projection='3d') axes.get_xaxis().set_major_locator(MaxNLocator(integer=True)) axes.set_title(title) axes.set_xlabel('Number of Features') axes.set_ylabel('Learning Rate') axes.set_zlabel('RMSE ') return figure, axes
Example #15
Source File: graph_rmse.py From netflix with MIT License | 5 votes |
def get_figure_and_axes_for_epoch_vs_learn(info): title = ('Epochs vs. Learning Rates ({train} to {test})\n {f} Features' .format(train=info.train_set_name, test=info.test_set_name, f=info.num_features)) figure = plt.figure() figure.canvas.set_window_title(title) axes = figure.add_subplot(111, projection='3d') axes.get_xaxis().set_major_locator(MaxNLocator(integer=True)) axes.set_title(title) axes.set_xlabel('Number of Epochs') axes.set_ylabel('Learning Rate') axes.set_zlabel('RMSE ') return figure, axes
Example #16
Source File: test_ticker.py From ImageFusion with MIT License | 5 votes |
def test_MaxNLocator(): loc = mticker.MaxNLocator(nbins=5) test_value = np.array([20., 40., 60., 80., 100.]) assert_almost_equal(loc.tick_values(20, 100), test_value) test_value = np.array([0., 0.0002, 0.0004, 0.0006, 0.0008, 0.001]) assert_almost_equal(loc.tick_values(0.001, 0.0001), test_value) test_value = np.array([-1.0e+15, -5.0e+14, 0e+00, 5e+14, 1.0e+15]) assert_almost_equal(loc.tick_values(-1e15, 1e15), test_value)
Example #17
Source File: colorbar.py From marvin with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _set_cbticks(cbrange, cb_kws): """Set colorbar ticks. Adjust colorbar range if using a discrete colorbar so that the ticks fall in the middle of each level. Parameters: cbrange (list): Colorbar range. cb_kws (dict): Keyword args to set and draw colorbar. Return: tuple: colorbar range, colorbar tick numbers """ if cb_kws.get('log_cb'): ticks = _log_cbticks(cbrange) else: try: ticks = MaxNLocator(cb_kws.get('n_ticks', 7)).tick_values(*cbrange) except AttributeError: print('AttributeError: MaxNLocator instance has no attribute ``tick_values``.') # if discrete colorbar, offset upper and lower cbrange so ticks are in center of each level if cb_kws.get('n_levels', None) is not None: offset = (ticks[1] - ticks[0]) / 2. cbrange = [ticks[0] - offset, ticks[-1] + offset] if cb_kws.get('tick_everyother', False): ticks = ticks[::2] return cbrange, ticks
Example #18
Source File: element.py From holoviews with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _adjust_cbar(self, cbar, label, dim): noalpha = math.floor(self.style[self.cyclic_index].get('alpha', 1)) == 1 for lb in ['clabel', 'labels']: labelsize = self._fontsize(lb, common=False).get('fontsize') if labelsize is not None: break if (cbar.solids and noalpha): cbar.solids.set_edgecolor("face") cbar.set_label(label, fontsize=labelsize) if isinstance(self.cbar_ticks, ticker.Locator): cbar.ax.yaxis.set_major_locator(self.cbar_ticks) elif self.cbar_ticks == 0: cbar.set_ticks([]) elif isinstance(self.cbar_ticks, int): locator = ticker.MaxNLocator(self.cbar_ticks) cbar.ax.yaxis.set_major_locator(locator) elif isinstance(self.cbar_ticks, list): if all(isinstance(t, tuple) for t in self.cbar_ticks): ticks, labels = zip(*self.cbar_ticks) else: ticks, labels = zip(*[(t, dim.pprint_value(t)) for t in self.cbar_ticks]) cbar.set_ticks(ticks) cbar.set_ticklabels(labels) for tk in ['cticks', 'ticks']: ticksize = self._fontsize(tk, common=False).get('fontsize') if ticksize is not None: cbar.ax.tick_params(labelsize=ticksize) break
Example #19
Source File: encoder_base.py From neural_sp with Apache License 2.0 | 5 votes |
def _plot_attention(self, save_path=None, n_cols=2): """Plot attention for each head in all encoder layers.""" from matplotlib import pyplot as plt from matplotlib.ticker import MaxNLocator # Clean directory if save_path is not None and os.path.isdir(save_path): shutil.rmtree(save_path) os.mkdir(save_path) if not hasattr(self, 'aws_dict'): return for k, aw in self.aws_dict.items(): lth = k.split('_')[-1].replace('layer', '') elens_l = self.data_dict['elens' + lth] plt.clf() n_heads = aw.shape[1] n_cols_tmp = 1 if n_heads == 1 else n_cols fig, axes = plt.subplots(max(1, n_heads // n_cols_tmp), n_cols_tmp, figsize=(20, 8), squeeze=False) for h in range(n_heads): ax = axes[h // n_cols_tmp, h % n_cols_tmp] ax.imshow(aw[-1, h, :elens_l[-1], :elens_l[-1]], aspect="auto") ax.grid(False) ax.set_xlabel("Input (head%d)" % h) ax.set_ylabel("Output (head%d)" % h) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) fig.tight_layout() if save_path is not None: fig.savefig(os.path.join(save_path, '%s.png' % k), dvi=500) plt.close()
Example #20
Source File: reporter.py From espnet with Apache License 2.0 | 5 votes |
def _plot_stats(self, keys: Sequence[str], key2: str): assert check_argument_types() # str is also Sequence[str] if isinstance(keys, str): raise TypeError(f"Input as [{keys}]") import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt import matplotlib.ticker as ticker plt.clf() epochs = np.arange(1, self.get_epoch() + 1) for key in keys: y = [ self.stats[e][key][key2] if e in self.stats and key in self.stats[e] and key2 in self.stats[e][key] else np.nan for e in epochs ] assert len(epochs) == len(y), "Bug?" plt.plot(epochs, y, label=key, marker="x") plt.legend() plt.title(f"epoch vs {key2}") # Force integer tick for x-axis plt.gca().get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) plt.xlabel("epoch") plt.ylabel(key2) plt.grid() return plt
Example #21
Source File: microloutputs.py From pyLIMA with GNU General Public License v3.0 | 5 votes |
def initialize_plot_lightcurve(fit): """Initialize the lightcurve plot. :param object fit: a fit object. See the microlfits for more details. :return: a matplotlib figure and the corresponding matplotlib axes :rtype: matplotlib_figure,matplotlib_axes """ fig_size = [10, 10] figure, figure_axes = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [3, 1]}, figsize=(fig_size[0], fig_size[1]), dpi=75) plt.subplots_adjust(top=0.9, bottom=0.15, left=0.15, right=0.99, wspace=0.2, hspace=0.1) figure_axes[0].grid() figure_axes[1].grid() # fig_size = plt.rcParams["figure.figsize"] figure.suptitle(fit.event.name, fontsize=30 * fig_size[0] / len(fit.event.name)) figure_axes[0].set_ylabel('Mag', fontsize=5 * fig_size[1] * 3 / 4.0) figure_axes[0].yaxis.set_major_locator(MaxNLocator(4)) figure_axes[0].tick_params(axis='y', labelsize=3.5 * fig_size[1] * 3 / 4.0) figure_axes[0].text(0.01, 0.96, 'provided by pyLIMA', style='italic', fontsize=10, transform=figure_axes[0].transAxes) figure_axes[1].set_xlabel('HJD', fontsize=5 * fig_size[0] * 3 / 4.0) figure_axes[1].xaxis.set_major_locator(MaxNLocator(3)) figure_axes[1].yaxis.set_major_locator(MaxNLocator(4, min_n_ticks=3)) figure_axes[1].ticklabel_format(useOffset=False, style='plain') figure_axes[1].set_ylabel('Residuals', fontsize=5 * fig_size[1] * 2 / 4.0) figure_axes[1].tick_params(axis='x', labelsize=3.5 * fig_size[0] * 3 / 4.0) figure_axes[1].tick_params(axis='y', labelsize=3.5 * fig_size[1] * 3 / 4.0) return figure, figure_axes
Example #22
Source File: plot_functions.py From ADNC with Apache License 2.0 | 5 votes |
def plot_matrix(self, matrix, ax, name='Weightings', mode='norm', color='RdYlBu', zero_width=5, zero_add='zeros'): assert matrix.shape.__len__() == 3, "plot weightings: need 3D matrix as data" if mode == 'log': norm = colors.LogNorm(vmin=1e-8, vmax=0.1) elif mode == 'norm1': norm = colors.Normalize(vmin=0, vmax=1) else: norm = colors.Normalize(vmin=-1, vmax=1) if zero_add == 'zeros': matrix = np.concatenate([matrix, np.zeros([matrix.shape[0], matrix.shape[1], zero_width])], axis=2) matrix = np.transpose(matrix, axes=(0, 2, 1)) flat_matrix = np.reshape(matrix, [-1, matrix.shape[2]]) flat_matrix = np.concatenate([np.zeros([zero_width, flat_matrix.shape[1]]), flat_matrix], axis=0) else: matrix = np.concatenate([matrix, np.ones([matrix.shape[0], matrix.shape[1], zero_width])], axis=2) matrix = np.transpose(matrix, axes=(0, 2, 1)) flat_matrix = np.reshape(matrix, [-1, matrix.shape[2]]) flat_matrix = np.concatenate([np.ones([zero_width, flat_matrix.shape[1]]), flat_matrix], axis=0) img = ax.imshow(np.transpose(flat_matrix), aspect='auto', interpolation='nearest', norm=norm, cmap=color) ax.set_adjustable('box-forced') if self.title: ax.set_ylabel(name, size=self.text_size) if self.legend: box = ax.get_position() ax.set_position([box.x0 - 0.001, box.y0, box.width, box.height]) axColor = plt.axes([box.x0 + box.width + 0.005, box.y0, 0.005, box.height]) cb = plt.colorbar(img, cax=axColor, orientation="vertical") for l in cb.ax.yaxis.get_ticklabels(): l.set_size(self.text_size) tick_locator = ticker.MaxNLocator(nbins=3) cb.locator = tick_locator cb.update_ticks()
Example #23
Source File: plots.py From ahmia-site with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate_figure(x, y1, y2, image_path, metric_str): """ Generate all figures for stats model, normally 4 plots in 2 figures :param x A list with dates :param y1 A list with integers for bottom line plot :param y2 A list with integers for upper line plot :param image_path The directory path to store pictures :param metric_str: A suffix to plot title, e.g 'Queries' """ # 2 subplots, the axes array is 1-d fig, axis = plt.subplots(2, sharex=True) fig.set_size_inches(11.4, 5.5) x_labels = x # _select_xticks(x) axis[0].set_title("Unique %s" % metric_str) axis[0].bar(x, y2, edgecolor="k") # fill in data axis[0].yaxis.set_major_locator(MaxNLocator(integer=True)) # int ylabels axis[0].grid(clip_on=True, marker='o', axis='y') # draw grid lines axis[0].set_xticks(x_labels) # set x-axis label values axis[0].set_xticklabels(x_labels) axis[1].set_title(metric_str) axis[1].bar(x, y1, edgecolor="k") # fill in data axis[1].yaxis.set_major_locator(MaxNLocator(integer=True)) # int ylabels axis[1].grid(clip_on=False, marker='o') # draw grid lines # save the figure plt.savefig(image_path, bbox_inches='tight', transparent=True)
Example #24
Source File: visualize.py From KATE with BSD 3-Clause "New" or "Revised" License | 5 votes |
def heatmap(data, save_file='heatmap.png'): ax = plt.figure().gca() ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MultipleLocator(5)) plt.pcolor(data, cmap=plt.cm.jet) plt.savefig(save_file) # plt.show()
Example #25
Source File: SPY.py From Stock-Analysis with MIT License | 5 votes |
def __call__(self, *args, **kwargs): return mticker.MaxNLocator.__call__(self, *args, **kwargs) # at most 5 ticks, pruning the upper and lower so they don't overlap # with other ticks #ax2.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) #ax3.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both'))
Example #26
Source File: SPY.py From Stock-Analysis with MIT License | 5 votes |
def __init__(self, *args, **kwargs): mticker.MaxNLocator.__init__(self, *args, **kwargs)
Example #27
Source File: plotting.py From beat with GNU General Public License v3.0 | 5 votes |
def apply_unified_axis(axs, varnames, unities, axis='x', ntickmarks_max=3, scale_factor=2 / 3): for ax, v in zip(axs.ravel('F'), varnames): if v in utility.grouped_vars: for setname, varrange in unities.items(): if v in utility.unit_sets[setname]: inc = nice_value(varrange[0] * scale_factor) autos = AutoScaler( inc=inc, snap='on', approx_ticks=ntickmarks_max) if axis == 'x': min, max = ax.get_xlim() elif axis == 'y': min, max = ax.get_ylim() min, max, sinc = autos.make_scale( (min, max), override_mode='min-max') # check physical bounds if passed truncate phys_min, phys_max = physical_bounds[v] if min < phys_min: min = phys_min if max > phys_max: max = phys_max if axis == 'x': ax.set_xlim((min, max)) elif axis == 'y': ax.set_ylim((min, max)) ticks = num.arange(min, max + inc, inc).tolist() if axis == 'x': ax.xaxis.set_ticks(ticks) elif axis == 'y': ax.yaxis.set_ticks(ticks) else: ticker = tick.MaxNLocator(nbins=3) if axis == 'x': ax.get_xaxis().set_major_locator(ticker) elif axis == 'y': ax.get_yaxis().set_major_locator(ticker)
Example #28
Source File: grid_finder.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __call__(self, v1, v2): if self._factor is not None: self.set_bounds(v1*self._factor, v2*self._factor) locs = mticker.MaxNLocator.__call__(self) return np.array(locs), len(locs), self._factor else: self.set_bounds(v1, v2) locs = mticker.MaxNLocator.__call__(self) return np.array(locs), len(locs), None
Example #29
Source File: grid_finder.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, nbins=10, steps=None, trim=True, integer=False, symmetric=False, prune=None): # trim argument has no effect. It has been left for API compatibility mticker.MaxNLocator.__init__(self, nbins, steps=steps, integer=integer, symmetric=symmetric, prune=prune) self.create_dummy_axis() self._factor = None
Example #30
Source File: mpl.py From neural-pipeline with MIT License | 5 votes |
def place_plot(self, axis) -> None: self._axis = axis for n, v in self._prev_values.items(): self._axis.scatter(v[1], v[0], label=n, c=self._colors[n]) self._axis.set_ylabel(self._handle) self._axis.set_xlabel('epoch') self._axis.xaxis.set_major_locator(MaxNLocator(integer=True)) self._axis.legend() plt.grid()