Python matplotlib.ticker.MultipleLocator() Examples

The following are 30 code examples of matplotlib.ticker.MultipleLocator(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib.ticker , or try the search function .
Example #1
Source File: utils.py    From seq2seq-summarizer with MIT License 7 votes vote down vote up
def show_plot(loss, step=1, val_loss=None, val_metric=None, val_step=1, file_prefix=None):
  plt.figure()
  fig, ax = plt.subplots(figsize=(12, 8))
  # this locator puts ticks at regular intervals
  loc = ticker.MultipleLocator(base=0.2)
  ax.yaxis.set_major_locator(loc)
  ax.set_ylabel('Loss', color='b')
  ax.set_xlabel('Batch')
  plt.plot(range(step, len(loss) * step + 1, step), loss, 'b')
  if val_loss:
    plt.plot(range(val_step, len(val_loss) * val_step + 1, val_step), val_loss, 'g')
  if val_metric:
    ax2 = ax.twinx()
    ax2.plot(range(val_step, len(val_metric) * val_step + 1, val_step), val_metric, 'r')
    ax2.set_ylabel('ROUGE', color='r')
  if file_prefix:
    plt.savefig(file_prefix + '.png')
    plt.close() 
Example #2
Source File: utils.py    From Dense-CoAttention-Network with MIT License 6 votes vote down vote up
def mask_ques(sen, attn, idx2word):
		"""
		Put attention weights to each word in sentence.
		--------------------
		Arguments:
			sen (LongTensor): encoded sentence.
			attn (FloatTensor): attention weights of each word.
			idx2word (dict): vocabulary.
		"""
		fig, ax = plt.subplots(figsize=(15,15))
		ax.matshow(attn, cmap='bone')
		y = [1]
		x = [1] + [idx2word[i] for i in sen]
		ax.set_yticklabels(y)
		ax.set_xticklabels(x)
		ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
		ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) 
Example #3
Source File: eval_nmt.py    From DL-Seq2Seq with MIT License 6 votes vote down vote up
def viz_attn(input_sentence, output_words, attentions):
    maxi = max(len(input_sentence.split()),len(output_words))
    attentions = attentions[:maxi,:maxi]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.numpy(), cmap=cm.bone)
    fig.colorbar(cax)

    ax.set_xticklabels([''] + input_sentence.split(' ') +
                       ['<EOS>'], rotation=90)
    ax.set_yticklabels([''] + output_words)

    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show() 
Example #4
Source File: joyplot.py    From LSDMappingTools with MIT License 6 votes vote down vote up
def _setup_axis(ax, x_range, col_name=None, grid=False, x_spacing=None):
    """ Setup the axis for the joyploy:
        - add the y label if required (as an ytick)
        - add y grid if required
        - make the background transparent
        - set the xlim according to the x_range
        - hide the xaxis and the spines
    """
    if col_name is not None:
        ax.set_yticks([0])
        ax.set_yticklabels([col_name])
        ax.yaxis.grid(grid)
    else:
        ax.yaxis.set_visible(False)
    ax.patch.set_alpha(0)
    ax.set_xlim([min(x_range), max(x_range)])
    ax.tick_params(axis='both', which='both', length=0, pad=10)
    if x_spacing is not None:
        ax.xaxis.set_major_locator(ticker.MultipleLocator(base=x_spacing))
    ax.xaxis.set_visible(_DEBUG)
    ax.set_frame_on(_DEBUG) 
Example #5
Source File: plot_confusion_matrix.py    From Chinese-Character-and-Calligraphic-Image-Processing with MIT License 6 votes vote down vote up
def plotCM(classes, matrix, savname):
    """classes: a list of class names"""
    # Normalize by row
    matrix = matrix.astype(np.float)
    linesum = matrix.sum(1)
    linesum = np.dot(linesum.reshape(-1, 1), np.ones((1, matrix.shape[1])))
    matrix /= linesum
    # plot
    plt.switch_backend('agg')
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(matrix)
    fig.colorbar(cax)
    ax.xaxis.set_major_locator(MultipleLocator(1))
    ax.yaxis.set_major_locator(MultipleLocator(1))
    for i in range(matrix.shape[0]):
        ax.text(i, i, str('%.2f' % (matrix[i, i] * 100)), va='center', ha='center')
    ax.set_xticklabels([''] + classes, rotation=90)
    ax.set_yticklabels([''] + classes)
    plt.savefig(savname) 
Example #6
Source File: energy_stats.py    From lmatools with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def plot_tot_energy_stats(size_stats, basedate, t_edges, outdir):
    t_start, t_end = t_edges[:-1], t_edges[1:]
    starts = np.fromiter( ((s - basedate).total_seconds() for s in t_start), dtype=float )
    ends = np.fromiter( ((e - basedate).total_seconds() for e in t_end), dtype=float )
    t = (starts+ends) / 2.0
    
    specific_energy = np.abs(size_stats)
    
    figure = plt.figure(figsize=(15,10))
    ax     = figure.add_subplot(111)
    ax.plot(t,specific_energy,'k-',label='Total Energy',alpha=0.6)
    plt.legend()
    # ax.set_xlabel('Time UTC')
    ax.set_ylabel('Total Energy (J)')
    
    for axs in figure.get_axes():
        axs.xaxis.set_major_formatter(SecDayFormatter(basedate, axs.xaxis))  
        axs.set_xlabel('Time (UTC)')
        axs.xaxis.set_major_locator(MultipleLocator(1800))
        axs.xaxis.set_minor_locator(MultipleLocator(1800/2))
    
    return figure
    
# In[6]: 
Example #7
Source File: energy_stats.py    From lmatools with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def plot_energy_stats(size_stats, basedate, t_edges, outdir):
    t_start, t_end = t_edges[:-1], t_edges[1:]
    starts = np.fromiter( ((s - basedate).total_seconds() for s in t_start), dtype=float )
    ends = np.fromiter( ((e - basedate).total_seconds() for e in t_end), dtype=float )
    t = (starts+ends) / 2.0
    
    specific_energy = size_stats
    
    figure = plt.figure(figsize=(15,10))
    ax     = figure.add_subplot(111)
    ax.plot(t,specific_energy,'k-',label='Specific Energy',alpha=0.6)
    plt.legend()
    # ax.set_xlabel('Time UTC')
    ax.set_ylabel('Specific Energy (J/kg)')
    
    for axs in figure.get_axes():
        axs.xaxis.set_major_formatter(SecDayFormatter(basedate, axs.xaxis))  
        axs.set_xlabel('Time (UTC)')
        axs.xaxis.set_major_locator(MultipleLocator(1800))
        axs.xaxis.set_minor_locator(MultipleLocator(1800/2))
    
    return figure 
Example #8
Source File: cem.py    From visual_dynamics with MIT License 6 votes vote down vote up
def visualization_init(self):
        fig = plt.figure(figsize=(12, 6), frameon=False, tight_layout=True)
        fig.canvas.set_window_title(self.servoing_pol.predictor.name)
        gs = gridspec.GridSpec(1, 2)
        plt.show(block=False)

        return_plotter = LossPlotter(fig, gs[0],
                                     format_dicts=[dict(linewidth=2)] * 2,
                                     labels=['mean returns / 10', 'mean discounted returns'],
                                     ylabel='returns')
        return_major_locator = MultipleLocator(1)
        return_major_formatter = FormatStrFormatter('%d')
        return_minor_locator = MultipleLocator(1)
        return_plotter._ax.xaxis.set_major_locator(return_major_locator)
        return_plotter._ax.xaxis.set_major_formatter(return_major_formatter)
        return_plotter._ax.xaxis.set_minor_locator(return_minor_locator)

        learning_plotter = LossPlotter(fig, gs[1], format_dicts=[dict(linewidth=2)] * 2, ylabel='mean evaluation values')
        return fig, return_plotter, learning_plotter 
Example #9
Source File: basic_units.py    From python3_ios with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def axisinfo(unit, axis):
        'return AxisInfo instance for x and unit'

        if unit == radians:
            return units.AxisInfo(
                majloc=ticker.MultipleLocator(base=np.pi/2),
                majfmt=ticker.FuncFormatter(rad_fn),
                label=unit.fullname,
            )
        elif unit == degrees:
            return units.AxisInfo(
                majloc=ticker.AutoLocator(),
                majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'),
                label=unit.fullname,
            )
        elif unit is not None:
            if hasattr(unit, 'fullname'):
                return units.AxisInfo(label=unit.fullname)
            elif hasattr(unit, 'unit'):
                return units.AxisInfo(label=unit.unit.fullname)
        return None 
Example #10
Source File: modular_metalearning.py    From modular-metalearning with MIT License 6 votes vote down vote up
def plot_sharing(self):
    if (self.METRICS['Sharing'] is not None and
            np.max(self.METRICS['Sharing'])>1e-4 and
            len(self.METRICS['NumberToWords']) <= 50):
      #Find ordering
      aux = list(enumerate(self.METRICS['NumberToWords']))
      aux.sort(key = lambda x : x[1])
      sorted_order = [_[0] for _ in aux]
      cax = plt.gca().matshow(np.array(
        self.METRICS['Sharing'])[sorted_order,:][:,sorted_order]
        /self.S.usage_normalization)
      plt.gca().set_xticklabels(['']+sorted(self.METRICS['NumberToWords']))
      plt.gca().set_yticklabels(['']+sorted(self.METRICS['NumberToWords']))
      plt.gca().xaxis.set_major_locator(ticker.MultipleLocator(1))
      plt.gca().yaxis.set_major_locator(ticker.MultipleLocator(1))
      if self.store_video:
        plt.savefig(os.path.join(self.plot_name, 'video/sharing-rate_'+
          str(self.step)))
      plt.gcf().colorbar(cax)
      plt.savefig(os.path.join(self.plot_name, 'sharing-rate'))
      plt.clf() 
Example #11
Source File: logutils.py    From obman_train with GNU General Public License v3.0 6 votes vote down vote up
def plot_logs(logs, score_name="top1", y_max=1, prefix=None, score_type=None):
    """
    Args:
        score_type (str): label for current curve, [valid|train|aggreg]
    """

    # Plot all losses
    scores = logs[score_name]
    if score_type is None:
        label = prefix + ""
    else:
        label = prefix + "_" + score_type.lower()

    plt.plot(scores, label=label)
    plt.title(score_name)
    if score_name == "top1" or score_name == "top1_action":
        # Set maximum for y axis
        plt.minorticks_on()
        x1, x2, _, _ = plt.axis()
        axes = plt.gca()
        axes.yaxis.set_minor_locator(MultipleLocator(0.02))
        plt.axis((x1, x2, 0, y_max))
        plt.grid(b=True, which="minor", color="k", alpha=0.2, linestyle="-")
        plt.grid(b=True, which="major", color="k", linestyle="-") 
Example #12
Source File: train.py    From pytorch-in-action with MIT License 6 votes vote down vote up
def showAttention(input_sentence, output_words, attentions):
    try:
        # 添加绘图中的中文显示
        plt.rcParams['font.sans-serif'] = ['STSong']  # 宋体
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
        # 使用 colorbar 初始化绘图
        fig = plt.figure()
        ax = fig.add_subplot(111)
        cax = ax.matshow(attentions.numpy(), cmap='bone')
        fig.colorbar(cax)

        # 设置x,y轴信息
        ax.set_xticklabels([''] + input_sentence.split(' ') +
                           ['<EOS>'], rotation=90)
        ax.set_yticklabels([''] + output_words)

        # 显示标签
        ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

        plt.show()
    except Exception as err:
        logger.error(err) 
Example #13
Source File: plot_attention.py    From neural-combinatorial-rl-pytorch with MIT License 6 votes vote down vote up
def plot_attention(in_seq, out_seq, attentions):
    """ From http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html"""

    # Set up figure with colorbar
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions, cmap='bone')
    fig.colorbar(cax)

    # Set up axes
    ax.set_xticklabels([' '] + [str(x) for x in in_seq], rotation=90)
    ax.set_yticklabels([' '] + [str(x) for x in out_seq])

    # Show label at every tick
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show() 
Example #14
Source File: energy_stats.py    From lmatools with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def plot(self):
        fig = plt.figure(figsize=(11,8.5))
        starts = np.fromiter( ((s - self.basedate).total_seconds() for s in self.t_start), dtype=float )
        ends = np.fromiter( ((e - self.basedate).total_seconds() for e in self.t_end), dtype=float )
        t = (starts+ends) / 2.0
        window_size = (ends-starts)/60.0 # in minutes
        moments = np.asarray(self.moments) # N by n_moments
        
        ax_energy = fig.add_subplot(2,2,2)
        ax_energy.plot(t, self.energy/window_size, label='Total energy')
        ax_energy.legend()
        
        ax_count = fig.add_subplot(2,2,1, sharex=ax_energy)
        #ax_count.plot(t, self.energy_per/window_size, label='$E_T$ flash$^{-1}$ min$^{-1}$ ')
        ax_count.plot(t, moments[:,0]/window_size, label='Flash rate (min$^{-1}$)')
        ax_count.legend()#location='upper left')
        
        ax_mean = fig.add_subplot(2,2,3, sharex=ax_energy)
        mean, std, skew, kurt = moments[:,1], moments[:,2], moments[:,3], moments[:,4]
        sigma = np.sqrt(std)
        ax_mean.plot(t, mean, label = 'Mean flash size (km)')
        ax_mean.plot(t, sigma, label = 'Standard deviation (km)')
        ax_mean.set_ylim(0, 20)
        ax_mean.legend()
#         ax_mean.fill_between(t, mean+sigma, mean-sigma, facecolor='blue', alpha=0.5)
        
        ax_higher = fig.add_subplot(2,2,4, sharex=ax_energy)
        ax_higher.plot(t, skew, label='Skewness')
        ax_higher.plot(t, kurt, label='Kurtosis')
        ax_higher.set_ylim(-2,10)
        ax_higher.legend()
        
        for ax in fig.get_axes():
            ax.xaxis.set_major_formatter(SecDayFormatter(self.basedate, ax.xaxis))  
            ax.set_xlabel('Time (UTC)')
            ax.xaxis.set_major_locator(MultipleLocator(3600))
            ax.xaxis.set_minor_locator(MultipleLocator(1800))
        return fig 
Example #15
Source File: energy_stats.py    From lmatools with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def plot_flash_stat_time_series(basedate, t_edges, stats, major_tick_every=1800):
    t_start, t_end = t_edges[:-1], t_edges[1:]
    fig = plt.figure(figsize=(11,8.5))
    starts = np.fromiter( ((s - basedate).total_seconds() for s in t_start), dtype=float )
    ends = np.fromiter( ((e - basedate).total_seconds() for e in t_end), dtype=float )
    t = (starts+ends) / 2.0
    window_size = (ends-starts)/60.0 # in minutes

    ax_energy = fig.add_subplot(2,2,2)
    ax_energy.plot(t, stats['energy']/window_size, label='Total energy')
    ax_energy.legend()

    ax_count = fig.add_subplot(2,2,1, sharex=ax_energy)
    # ax_count.plot(t, stats['energy_per_flash']/window_size, label='$E_T$ flash$^{-1}$ min$^{-1}$ ')
    ax_count.plot(t, stats['number']/window_size, label='Flash rate (min$^{-1}$)')
    ax_count.legend()#location='upper left')

    ax_mean = fig.add_subplot(2,2,3, sharex=ax_energy)
    mean, std = stats['mean'], stats['variance'], 
    skew, kurt = stats['skewness'], stats['kurtosis']
    sigma = np.sqrt(std)
    ax_mean.plot(t, mean, label = 'Mean flash size (km)')
    ax_mean.plot(t, sigma, label = 'Standard deviation (km)')
    ax_mean.set_ylim(0, 20)
    ax_mean.legend()
#         ax_mean.fill_between(t, mean+sigma, mean-sigma, facecolor='blue', alpha=0.5)

    ax_higher = fig.add_subplot(2,2,4, sharex=ax_energy)
    ax_higher.plot(t, skew, label='Skewness')
    ax_higher.plot(t, kurt, label='Kurtosis')
    ax_higher.set_ylim(-2,10)
    ax_higher.legend()

    for ax in fig.get_axes():
        ax.xaxis.set_major_formatter(SecDayFormatter(basedate, ax.xaxis))  
        ax.set_xlabel('Time (UTC)')
        ax.xaxis.set_major_locator(MultipleLocator(major_tick_every))
        ax.xaxis.set_minor_locator(MultipleLocator(major_tick_every/2.0))
    return fig 
Example #16
Source File: test_ticker.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_basic(self):
        loc = mticker.MultipleLocator(base=3.147)
        test_value = np.array([-9.441, -6.294, -3.147, 0., 3.147, 6.294,
                               9.441, 12.588])
        assert_almost_equal(loc.tick_values(-7, 10), test_value) 
Example #17
Source File: gru_attention_anki.py    From artificial_neural_networks with Apache License 2.0 5 votes vote down vote up
def plot_attention(attention, sentence, predicted_sentence):
    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(1, 1, 1)
    ax.matshow(attention, cmap='viridis')

    fontdict = {'fontsize': 14}

    ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90)
    ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict)

    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show() 
Example #18
Source File: calculations_atom_single.py    From ARC-Alkali-Rydberg-Calculator with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def showPlot(self):
        """
            Shows a level diagram plot
        """
        self.listX = np.array(self.listX)
        self.ax.set_ylabel("Energy (eV)")
        self.ax.set_xlim(-0.5 + np.min(self.listX), np.max(self.listX) + 0.5)

        # X AXIS
        majorLocator = MultipleLocator(1)

        self.ax.xaxis.set_major_locator(majorLocator)
        tickNames = []
        for s in self.sList:
            sNumber  = round(2 * s + 1)
            for l in xrange(self.lFrom, self.lTo + 1):
                tickNames.append("$^%d %s$" % (sNumber, printStateLetter(l) ) )
        tickNum = len(self.ax.get_xticklabels())

        self.fig.canvas.draw()
        self.ax.set_xticks(np.arange(tickNum))
        self.ax.set_xticklabels(tickNames)
        self.ax.set_xlim(-0.5 + np.min(self.listX), np.max(self.listX) + 0.5)
        self.fig.canvas.mpl_connect('pick_event', self.onpick2)
        self.state1[0] = -1  # initialise for picking
        plt.show() 
Example #19
Source File: utilities.py    From dcase2018_task1 with MIT License 5 votes vote down vote up
def plot_confusion_matrix(confusion_matrix, title, labels, values):
    """Plot confusion matrix.

    Inputs:
      confusion_matrix: matrix, (classes_num, classes_num)
      labels: list of labels
      values: list of values to be shown in diagonal

    Ouputs:
      None
    """

    fig = plt.figure(figsize=(6, 6))
    ax = fig.add_subplot(111)

    cax = ax.matshow(confusion_matrix, cmap=plt.cm.Blues)

    if labels:
        ax.set_xticklabels([''] + labels, rotation=90, ha='left')
        ax.set_yticklabels([''] + labels)
        ax.xaxis.set_ticks_position('bottom')

    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    for n in range(len(values)):
        plt.text(n - 0.4, n, '{:.2f}'.format(values[n]), color='yellow')

    plt.title(title)
    plt.xlabel('Predicted')
    plt.ylabel('Target')
    plt.tight_layout()
    plt.show() 
Example #20
Source File: dates.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def __init__(self, interval=1, tz=None):
        """
        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second microsecond.

        """
        self._interval = interval
        self._wrapped_locator = ticker.MultipleLocator(interval)
        self.tz = tz 
Example #21
Source File: plot_Fo_vs_Fc.py    From dials with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _plot(self):
        fig = plt.figure()
        ax = fig.add_subplot(111)
        minor_loc = MultipleLocator(10)
        ax.yaxis.set_minor_locator(minor_loc)
        ax.xaxis.set_minor_locator(minor_loc)
        ax.grid(True, which="minor")
        ax.set_axisbelow(True)
        ax.set_aspect("equal")
        ax.set_xlabel(r"$F_c$")
        ax.set_ylabel(r"$F_o$")
        ax.scatter(self.fc, self.fobs, s=1, c="indianred")

        if self.params.max_Fc:
            ax.set_xlim((0, self.params.max_Fc))
            ax.set_ylim((0, self.params.max_Fc))

        if self.params.show_y_eq_x:
            ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c="0.0", linewidth=0.8)

        if self.model_fit:
            x = flex.double_range(0, int(ax.get_xlim()[1]))
            y = self.model_fit(x)
            ax.plot(x, y, c="0.0", linewidth=0.8)

        print("Saving plot to {0}".format(self.params.plot_filename))
        plt.savefig(self.params.plot_filename) 
Example #22
Source File: xview.py    From xDeepLearningBook with MIT License 5 votes vote down vote up
def showCurves(self, idx, x, ys, line_labels, colors, ax_labels):
        LINEWIDTH = 1.0 # 线宽
        plt.figure(figsize=(8, 4))
        # loss
        ax1 = plt.subplot(121) # 上下窗的上图
        for i in range(len(self.line_labels)):
            line = plt.plot(x[:idx], ys[i][:idx])[0]
            plt.setp(line, color=colors[i], linewidth=LINEWIDTH, label=line_labels[i])

        ax1.xaxis.set_major_locator(MultipleLocator(300)) # 横坐标步长
        ax1.yaxis.set_major_locator(MultipleLocator(0.2))  # 纵坐标步长
        ax1.set_xlabel(ax_labels[0])
        ax1.set_ylabel(ax_labels[1])
        plt.grid()
        plt.legend()

        # Acc
        ax2 = plt.subplot(122) # 上下窗的下图
        for i in range(len(self.line_labels), len(self.line_labels) * 2):
            line = plt.plot(x[:idx], ys[i][:idx])[0]
            plt.setp(line, color=colors[i-len(self.line_labels)], linewidth=LINEWIDTH, label=line_labels[i-len(self.line_labels)])

        ax2.xaxis.set_major_locator(MultipleLocator(300)) # 横坐标步长
        ax2.yaxis.set_major_locator(MultipleLocator(0.05)) # 纵坐标步长
        ax2.set_xlabel(ax_labels[0])
        ax2.set_ylabel(ax_labels[2])

        plt.grid()
        plt.legend()
        plt.show() 
Example #23
Source File: xview.py    From xDeepLearningBook with MIT License 5 votes vote down vote up
def showCurves(self, idx, x, ys, line_labels, colors, ax_labels):
        lsArr = [':','-']
        LINEWIDTH = 2.0
        plt.figure(figsize=(8, 4))
        # loss
        ax1 = plt.subplot(211)
        for i in range(2):
            line = plt.plot(x[:idx], ys[i][:idx])[0]
            plt.setp(line, color=colors[i], ls=lsArr[i%2],linewidth=LINEWIDTH, label=line_labels[i])

        ax1.xaxis.set_major_locator(MultipleLocator(4000))
        ax1.yaxis.set_major_locator(MultipleLocator(0.1))
        ax1.set_xlabel(ax_labels[0])
        ax1.set_ylabel(ax_labels[1])
        plt.grid()
        plt.legend()

        # Acc
        ax2 = plt.subplot(212)
        for i in range(2, 4):
            line = plt.plot(x[:idx], ys[i][:idx])[0]
            plt.setp(line, color=colors[i], ls=lsArr[i%2], linewidth=LINEWIDTH, label=line_labels[i])

        ax2.xaxis.set_major_locator(MultipleLocator(4000))
        ax2.yaxis.set_major_locator(MultipleLocator(0.02))
        ax2.set_xlabel(ax_labels[0])
        ax2.set_ylabel(ax_labels[2])

        plt.grid()
        plt.legend()
        plt.show()
        plt.close() 
Example #24
Source File: tutorial.py    From TaskBot with GNU General Public License v3.0 5 votes vote down vote up
def showPlot(points):
    plt.figure()
    fig, ax = plt.subplots()
    # this locator puts ticks at regular intervals
    loc = ticker.MultipleLocator(base=0.2)
    ax.yaxis.set_major_locator(loc)
    plt.plot(points) 
Example #25
Source File: chapter3_dnn_L2_mnist.py    From xDeepLearningBook with MIT License 5 votes vote down vote up
def showCurves(idx ,x,ys, line_labels,colors,ax_labels):
    LINEWIDTH = 2.0
    plt.figure(figsize=(8, 4))
    #loss
    ax1 = plt.subplot(211)
    for i in range(2):
        line = plt.plot(x[:idx], ys[i][:idx])[0]
        plt.setp(line, color=colors[i],linewidth=LINEWIDTH, label=line_labels[i])

    ax1.xaxis.set_major_locator(MultipleLocator(4000))
    ax1.yaxis.set_major_locator(MultipleLocator(0.1))
    ax1.set_xlabel(ax_labels[0])
    ax1.set_ylabel(ax_labels[1])
    plt.grid()
    plt.legend()

    #Acc
    ax2 = plt.subplot(212)
    for i in range(2,4):
        line = plt.plot(x[:idx], ys[i][:idx])[0]
        plt.setp(line, color=colors[i],linewidth=LINEWIDTH, label=line_labels[i])

    ax2.xaxis.set_major_locator(MultipleLocator(4000))
    ax2.yaxis.set_major_locator(MultipleLocator(0.02))
    ax2.set_xlabel(ax_labels[0])
    ax2.set_ylabel(ax_labels[2])

    plt.grid()
    plt.legend()
    plt.show()


# 加载mnist 
Example #26
Source File: helper.py    From transferable_sent2vec with MIT License 5 votes vote down vote up
def save_plot(points, filepath, filetag, epoch):
    """Generate and save the plot"""
    path_prefix = os.path.join(filepath, filetag)
    path = path_prefix + 'epoch_{}.png'.format(epoch)
    fig, ax = plt.subplots()
    loc = ticker.MultipleLocator(base=0.2)  # this locator puts ticks at regular intervals
    ax.yaxis.set_major_locator(loc)
    ax.plot(points)
    fig.savefig(path)
    plt.close(fig)  # close the figure
    for f in glob.glob(path_prefix + '*'):
        if f != path:
            os.remove(f) 
Example #27
Source File: helper.py    From transferable_sent2vec with MIT License 5 votes vote down vote up
def save_plot(points, filepath, filetag, epoch):
    """Generate and save the plot"""
    path_prefix = os.path.join(filepath, filetag)
    path = path_prefix + 'epoch_{}.png'.format(epoch)
    fig, ax = plt.subplots()
    loc = ticker.MultipleLocator(base=0.2)  # this locator puts ticks at regular intervals
    ax.yaxis.set_major_locator(loc)
    ax.plot(points)
    fig.savefig(path)
    plt.close(fig)  # close the figure
    for f in glob.glob(path_prefix + '*'):
        if f != path:
            os.remove(f) 
Example #28
Source File: helper.py    From transferable_sent2vec with MIT License 5 votes vote down vote up
def save_plot(points, filepath, filetag, epoch):
    """Generate and save the plot"""
    path_prefix = os.path.join(filepath, filetag)
    path = path_prefix + 'epoch_{}.png'.format(epoch)
    fig, ax = plt.subplots()
    loc = ticker.MultipleLocator(base=0.2)  # this locator puts ticks at regular intervals
    ax.yaxis.set_major_locator(loc)
    ax.plot(points)
    fig.savefig(path)
    plt.close(fig)  # close the figure
    for f in glob.glob(path_prefix + '*'):
        if f != path:
            os.remove(f) 
Example #29
Source File: runme.py    From dcase2017_task4_cvssp with MIT License 5 votes vote down vote up
def sed_visualize():
    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker
    
    sed_prob_mat_list_path = 'data/sed_prob_mat_list.csv.gz'
    
    (na_list, pd_prob_mat_list, gt_digit_mat_list) = visualize.sed_visualize(
         sed_prob_mat_list_path=sed_prob_mat_list_path, 
         strong_gt_csv=strong_gt_csv, 
         lbs=lbs, 
         step_sec=step_sec, 
         max_len=max_len)
         
    for n in xrange(len(na_list)):
        na = na_list[n]
        pd_prob_mat = pd_prob_mat_list[n]
        gt_digit_mat = gt_digit_mat_list[n]
        
        fig, axs = plt.subplots(3, 1, sharex=True)
        
        axs[0].set_title(na + "\nYou may plot spectrogram here yourself. ")
        # axs[0].matshow(x.T, origin='lower', aspect='auto') # load & plot spectrogram here. 
        
        axs[1].set_title("Prediction")
        axs[1].matshow(pd_prob_mat.T, origin='lower', aspect='auto', vmin=0., vmax=1.)	
        axs[1].set_yticklabels([''] + lbs)
        axs[1].yaxis.set_major_locator(ticker.MultipleLocator(1))
        axs[1].yaxis.grid(color='w', linestyle='solid', linewidth=0.3)
        
        axs[2].set_title("Ground truth")
        axs[2].matshow(gt_digit_mat.T, origin='lower', aspect='auto', vmin=0., vmax=1.)	
        axs[2].set_yticklabels([''] + lbs)
        axs[2].yaxis.set_major_locator(ticker.MultipleLocator(1))
        axs[2].yaxis.grid(color='w', linestyle='solid', linewidth=0.3)
        plt.show()
        
    
### main 
Example #30
Source File: test_ticker.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_view_limits_round_numbers(self):
        """
        Test that everything works properly with 'round_numbers' for auto
        limit.
        """
        with matplotlib.rc_context({'axes.autolimit_mode': 'round_numbers'}):
            loc = mticker.MultipleLocator(base=3.147)
            assert_almost_equal(loc.view_limits(-4, 4), (-6.294, 6.294))