Python scipy.misc.imresize() Examples
The following are 30
code examples of scipy.misc.imresize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.misc
, or try the search function
.
Example #1
Source File: BatchDatsetReader.py From Colorization.tensorflow with MIT License | 7 votes |
def _transform(self, filename): try: image = misc.imread(filename) if len(image.shape) < 3: # make sure images are of shape(h,w,3) image = np.array([image for i in range(3)]) if self.image_options.get("resize", False) and self.image_options["resize"]: resize_size = int(self.image_options["resize_size"]) resize_image = misc.imresize(image, [resize_size, resize_size]) else: resize_image = image if self.image_options.get("color", False): option = self.image_options['color'] if option == "LAB": resize_image = color.rgb2lab(resize_image) elif option == "HSV": resize_image = color.rgb2hsv(resize_image) except: print ("Error reading file: %s of shape %s" % (filename, str(image.shape))) raise return np.array(resize_image)
Example #2
Source File: imgproc.py From graph_distillation with Apache License 2.0 | 6 votes |
def resize(video, size, interpolation): """ :param video: ... x h x w x num_channels :param size: (h, w) :param interpolation: 'bilinear', 'nearest' :return: """ shape = video.shape[:-3] num_channels = video.shape[-1] video = video.reshape((-1, *video.shape[-3:])) resized_video = np.zeros((video.shape[0], *size, video.shape[-1])) for i in range(video.shape[0]): if num_channels == 3: resized_video[i] = imresize(video[i], size, interpolation) elif num_channels == 2: resized_video[i, ..., 0] = imresize(video[i, ..., 0], size, interpolation) resized_video[i, ..., 1] = imresize(video[i, ..., 1], size, interpolation) elif num_channels == 1: resized_video[i, ..., 0] = imresize(video[i, ..., 0], size, interpolation) else: raise NotImplementedError return resized_video.reshape((*shape, *size, video.shape[-1]))
Example #3
Source File: segmentFinal.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def align_char(char_img, target_h, target_w): canvas = np.ones([target_h, target_w], dtype=np.int32) * 255 img_h, img_w = char_img.shape[0], char_img.shape[1] if img_h > img_w: new_h = target_h new_w = np.int32(img_w * target_h / img_h) char_img = misc.imresize(char_img, [new_h, new_w]) mid_w = target_w // 2 start = mid_w - new_w // 2 end = start + new_w canvas[:, start:end] = char_img if img_h < img_w: new_w = target_w new_h = np.int32(img_h * target_w / img_w) char_img = misc.imresize(char_img, [new_h, new_w]) mid_h = target_h // 2 start = mid_h - new_h // 2 end = start + new_h canvas[start:end, :] = char_img if img_h == img_w: canvas = misc.imresize(char_img, [target_h, target_w]) return canvas
Example #4
Source File: test.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def test(self): list_ = os.listdir("./maps/val/") nums_file = list_.__len__() saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator")) saver.restore(self.sess, "./save_para/model.ckpt") rand_select = np.random.randint(0, nums_file) INPUTS_CONDITION = np.zeros([1, self.img_h, self.img_w, 3]) INPUTS = np.zeros([1, self.img_h, self.img_w, 3]) img = np.array(Image.open(self.path + list_[rand_select])) img_h, img_w = img.shape[0], img.shape[1] INPUTS_CONDITION[0] = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0 INPUTS[0] = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0 [fake_img] = self.sess.run([self.inputs_fake], feed_dict={self.inputs_condition: INPUTS_CONDITION}) out_img = np.concatenate((INPUTS_CONDITION[0], fake_img[0], INPUTS[0]), axis=1) Image.fromarray(np.uint8((out_img + 1.0)*127.5)).save("./results/1.jpg") plt.imshow(np.uint8((out_img + 1.0)*127.5)) plt.grid("off") plt.axis("off") plt.show()
Example #5
Source File: pix2pix.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def train(self): list = os.listdir(self.path) nums_file = list.__len__() saver = tf.train.Saver() for i in range(10000): rand_select = np.random.randint(0, nums_file, [self.batch_size]) INPUTS = np.zeros([self.batch_size, self.img_h, self.img_w, 3]) INPUTS_CONDITION = np.zeros([self.batch_size, self.img_h, self.img_w, 3]) for j in range(self.batch_size): img = np.array(Image.open(self.path + list[rand_select[j]])) img_h, img_w = img.shape[0], img.shape[1] INPUT_CON = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0 INPUTS_CONDITION[j] = np.dstack((INPUT_CON, INPUT_CON, INPUT_CON)) INPUT = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0 INPUTS[j] = np.dstack((INPUT, INPUT, INPUT)) self.sess.run(self.opt_dis, feed_dict={self.inputs: INPUTS, self.inputs_condition: INPUTS_CONDITION}) self.sess.run(self.opt_gen, feed_dict={self.inputs: INPUTS, self.inputs_condition: INPUTS_CONDITION}) if i % 10 == 0: [G_LOSS, D_LOSS] = self.sess.run([self.g_loss, self.d_loss], feed_dict={self.inputs: INPUTS, self.inputs_condition: INPUTS_CONDITION}) print("Iteration: %d, d_loss: %f, g_loss: %f"%(i, D_LOSS, G_LOSS)) if i % 100 == 0: saver.save(self.sess, "./save_para//model.ckpt")
Example #6
Source File: getImgs.py From crawl-dataset with ISC License | 6 votes |
def resizeImg(imgPath,img_size): try: img = imread(imgPath) h, w, _ = img.shape scale = 1 if w >= h: new_w = img_size if w >= new_w: scale = float(new_w) / w new_h = int(h * scale) else: new_h = img_size if h >= new_h: scale = float(new_h) / h new_w = int(w * scale) new_img = imresize(img, (new_h, new_w), interp='bilinear') imsave(imgPath,new_img) print('Img Resized as {}'.format(img_size)) except Exception as e: print(e)
Example #7
Source File: getImgs.py From crawl-dataset with ISC License | 6 votes |
def resizeImg(imgPath,img_size): img = imread(imgPath) h, w, _ = img.shape scale = 1 if w >= h: new_w = img_size if w >= new_w: scale = float(new_w) / w new_h = int(h * scale) else: new_h = img_size if h >= new_h: scale = float(new_h) / h new_w = int(w * scale) new_img = imresize(img, (new_h, new_w), interp='bilinear') imsave(imgPath,new_img) print('Img Resized as {}'.format(img_size))
Example #8
Source File: getImages.py From crawl-dataset with ISC License | 6 votes |
def resizeImg(imgPath,img_size): img = imread(imgPath) h, w, _ = img.shape scale = 1 if w >= h: new_w = img_size if w >= new_w: scale = float(new_w) / w new_h = int(h * scale) else: new_h = img_size if h >= new_h: scale = float(new_h) / h new_w = int(w * scale) new_img = imresize(img, (new_h, new_w), interp='bilinear') imsave(imgPath,new_img) #Download img #Later we can do multi thread apply workers to do faster work
Example #9
Source File: fid_score.py From Face-and-Image-super-resolution with MIT License | 6 votes |
def _compute_statistics_of_path(path, model, batch_size, dims, cuda): if path.endswith('.npz'): f = np.load(path) m, s = f['mu'][:], f['sigma'][:] f.close() else: path = pathlib.Path(path) files = list(path.glob('*.jpg')) + list(path.glob('*.png')) #imgs = np.array([imresize(imread(str(fn)),(64,64)).astype(np.float32) for fn in files]) imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files]) # Bring images to shape (B, 3, H, W) imgs = imgs.transpose((0, 3, 1, 2)) # Rescale images to be between 0 and 1 imgs /= 255 m, s = calculate_activation_statistics(imgs, model, batch_size, dims, cuda) return m, s
Example #10
Source File: tracklet_utils_2d_online.py From TNT with GNU General Public License v3.0 | 6 votes |
def crop_det(det_M, img): global track_struct crop_det_folder = track_struct['file_path']['crop_det_folder'] crop_size = track_struct['track_params']['crop_size'] if not os.path.isdir(crop_det_folder): os.makedirs(crop_det_folder) save_patch_list = [] for n in range(len(det_M)): xmin = int(max(0,det_M[n,1])) xmax = int(min(img.shape[1]-1,det_M[n,1]+det_M[n,3])) ymin = int(max(0,det_M[n,2])) ymax = int(min(img.shape[0]-1,det_M[n,2]+det_M[n,4])) img_patch = img[ymin:ymax,xmin:xmax,:] img_patch = misc.imresize(img_patch, size=[crop_size,crop_size]) patch_name = track_lib.file_name(n,4)+'.png' save_path = crop_det_folder+'/'+patch_name misc.imsave(save_path, img_patch) save_patch_list.append(save_path) return save_patch_list
Example #11
Source File: tracklet_utils_3d_online.py From TNT with GNU General Public License v3.0 | 6 votes |
def crop_det(det_M, img): global track_struct crop_det_folder = track_struct['file_path']['crop_det_folder'] crop_size = track_struct['track_params']['crop_size'] if not os.path.isdir(crop_det_folder): os.makedirs(crop_det_folder) save_patch_list = [] for n in range(len(det_M)): xmin = int(max(0,det_M[n,1])) xmax = int(min(img.shape[1]-1,det_M[n,1]+det_M[n,3])) ymin = int(max(0,det_M[n,2])) ymax = int(min(img.shape[0]-1,det_M[n,2]+det_M[n,4])) img_patch = img[ymin:ymax,xmin:xmax,:] img_patch = misc.imresize(img_patch, size=[crop_size,crop_size]) patch_name = track_lib.file_name(n,4)+'.png' save_path = crop_det_folder+'/'+patch_name misc.imsave(save_path, img_patch) save_patch_list.append(save_path) return save_patch_list
Example #12
Source File: nyuv2_loader.py From PLARD with MIT License | 6 votes |
def transform(self, img, lbl): img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode img = img[:, :, ::-1] # RGB -> BGR img = img.astype(np.float64) img -= self.mean if self.img_norm: # Resize scales images from 0 to 255, thus we need # to divide by 255.0 img = img.astype(float) / 255.0 # NHWC -> NCHW img = img.transpose(2, 0, 1) classes = np.unique(lbl) lbl = lbl.astype(float) lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), "nearest", mode="F") lbl = lbl.astype(int) assert np.all(classes == np.unique(lbl)) img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() return img, lbl
Example #13
Source File: pascal_voc_loader.py From PLARD with MIT License | 6 votes |
def transform(self, img, lbl): img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode img = img[:, :, ::-1] # RGB -> BGR img = img.astype(np.float64) img -= self.mean if self.img_norm: # Resize scales images from 0 to 255, thus we need # to divide by 255.0 img = img.astype(float) / 255.0 # NHWC -> NCHW img = img.transpose(2, 0, 1) lbl[lbl==255] = 0 lbl = lbl.astype(float) lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F') lbl = lbl.astype(int) img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() return img, lbl
Example #14
Source File: davis17_online_data.py From MaskTrack with MIT License | 6 votes |
def make_img_gt_pair(self, idx): """ Make the image-ground-truth pair """ img = cv2.imread(os.path.join(self.db_root_dir, self.img_list[idx])) if self.labels[idx] is not None: label = cv2.imread(os.path.join(self.db_root_dir, self.labels[idx]), 0) else: gt = np.zeros(img.shape[:-1], dtype=np.uint8) if self.inputRes is not None: img = imresize(img, self.inputRes) if self.labels[idx] is not None: label = imresize(label, self.inputRes, interp='nearest') img = np.array(img, dtype=np.float32) img = np.subtract(img, np.array(self.meanval, dtype=np.float32)) if self.labels[idx] is not None: gt = np.array(label, dtype=np.float32) gt = gt/np.max([gt.max(), 1e-8]) return img, gt
Example #15
Source File: sunrgbd_loader.py From PLARD with MIT License | 6 votes |
def transform(self, img, lbl): img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode img = img[:, :, ::-1] # RGB -> BGR img = img.astype(np.float64) img -= self.mean if self.img_norm: # Resize scales images from 0 to 255, thus we need # to divide by 255.0 img = img.astype(float) / 255.0 # NHWC -> NCHW img = img.transpose(2, 0, 1) classes = np.unique(lbl) lbl = lbl.astype(float) lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F') lbl = lbl.astype(int) assert(np.all(classes == np.unique(lbl))) img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() return img, lbl
Example #16
Source File: ade20k_loader.py From PLARD with MIT License | 6 votes |
def transform(self, img, lbl): img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode img = img[:, :, ::-1] # RGB -> BGR img = img.astype(np.float64) img -= self.mean if self.img_norm: # Resize scales images from 0 to 255, thus we need # to divide by 255.0 img = img.astype(float) / 255.0 # NHWC -> NCHW img = img.transpose(2, 0, 1) lbl = self.encode_segmap(lbl) classes = np.unique(lbl) lbl = lbl.astype(float) lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F') lbl = lbl.astype(int) assert(np.all(classes == np.unique(lbl))) img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() return img, lbl
Example #17
Source File: utility_functions.py From MaskTrack with MIT License | 6 votes |
def apply_val_transform_image(image,inputRes=None): meanval = (104.00699, 116.66877, 122.67892) if inputRes is not None: image = sm.imresize(image, inputRes) image = np.array(image, dtype=np.float32) image = np.subtract(image, np.array(meanval, dtype=np.float32)) if image.ndim == 2: image = image[:, :, np.newaxis] # swap color axis because # numpy image: H x W x C # torch image: C X H X W image = image.transpose((2, 0, 1)) image = torch.from_numpy(image) return image
Example #18
Source File: img_utils.py From keras-vgg-buddy with MIT License | 5 votes |
def resize_image(img, img_width, img_height): img = models.img_from_vgg(img) img = imresize(img, (img_height, img_width), interp='bicubic').astype('float32') img = models.img_to_vgg(img) return img # util function to convert a tensor into a valid image
Example #19
Source File: img_utils.py From keras-vgg-buddy with MIT License | 5 votes |
def preprocess_image(img, img_width, img_height): img = imresize(img, (img_height, img_width), interp='bicubic').astype('float32') img = models.img_to_vgg(img) img = np.expand_dims(img, axis=0) return img
Example #20
Source File: img_utils.py From keras-vgg-buddy with MIT License | 5 votes |
def deprocess_image(x, contrast_percent=0.0, resize=None): x = models.img_from_vgg(x) if contrast_percent: min_x, max_x = np.percentile(x, (contrast_percent, 100 - contrast_percent)) x = (x - min_x) * 255.0 / (max_x - min_x) x = np.clip(x, 0, 255) if resize: x = imresize(x, resize, interp='bicubic') return x.astype('uint8')
Example #21
Source File: tf_record.py From DeepFloorplan with GNU General Public License v3.0 | 5 votes |
def load_seg_raw_images(path): paths = path.split('\t') image = imread(paths[0], mode='RGB') close = imread(paths[2], mode='L') room = imread(paths[3], mode='RGB') close_wall = imread(paths[4], mode='L') # NOTE: imresize will rescale the image to range [0, 255], also cast data into uint8 or uint32 image = imresize(image, (512, 512, 3)) close = imresize(close, (512, 512)) / 255 close_wall = imresize(close_wall, (512, 512)) / 255 room = imresize(room, (512, 512, 3)) room_ind = rgb2ind(room) # merge result d_ind = (close>0.5).astype(np.uint8) cw_ind = (close_wall>0.5).astype(np.uint8) room_ind[cw_ind==1] = 10 room_ind[d_ind==1] = 9 # make sure the dtype is uint8 image = image.astype(np.uint8) room_ind = room_ind.astype(np.uint8) # debug # merge = ind2rgb(room_ind, color_map=floorplan_fuse_map) # plt.subplot(131) # plt.imshow(image) # plt.subplot(132) # plt.imshow(room_ind) # plt.subplot(133) # plt.imshow(merge/256.) # plt.show() return image, room_ind
Example #22
Source File: tf_record.py From DeepFloorplan with GNU General Public License v3.0 | 5 votes |
def load_raw_images(path): paths = path.split('\t') image = imread(paths[0], mode='RGB') wall = imread(paths[1], mode='L') close = imread(paths[2], mode='L') room = imread(paths[3], mode='RGB') close_wall = imread(paths[4], mode='L') # NOTE: imresize will rescale the image to range [0, 255], also cast data into uint8 or uint32 image = imresize(image, (512, 512, 3)) wall = imresize(wall, (512, 512)) close = imresize(close, (512, 512)) close_wall = imresize(close_wall, (512, 512)) room = imresize(room, (512, 512, 3)) room_ind = rgb2ind(room) # make sure the dtype is uint8 image = image.astype(np.uint8) wall = wall.astype(np.uint8) close = close.astype(np.uint8) close_wall = close_wall.astype(np.uint8) room_ind = room_ind.astype(np.uint8) # debug # plt.subplot(231) # plt.imshow(image) # plt.subplot(233) # plt.imshow(wall, cmap='gray') # plt.subplot(234) # plt.imshow(close, cmap='gray') # plt.subplot(235) # plt.imshow(room_ind) # plt.subplot(236) # plt.imshow(close_wall, cmap='gray') # plt.show() return image, wall, close, room_ind, close_wall
Example #23
Source File: tf_record.py From DeepFloorplan with GNU General Public License v3.0 | 5 votes |
def load_bd_rm_images(path): paths = path.split('\t') image = imread(paths[0], mode='RGB') close = imread(paths[2], mode='L') room = imread(paths[3], mode='RGB') close_wall = imread(paths[4], mode='L') # NOTE: imresize will rescale the image to range [0, 255], also cast data into uint8 or uint32 image = imresize(image, (512, 512, 3)) close = imresize(close, (512, 512)) / 255. close_wall = imresize(close_wall, (512, 512)) / 255. room = imresize(room, (512, 512, 3)) room_ind = rgb2ind(room) # merge result d_ind = (close>0.5).astype(np.uint8) cw_ind = (close_wall>0.5).astype(np.uint8) cw_ind[cw_ind==1] = 2 cw_ind[d_ind==1] = 1 # make sure the dtype is uint8 image = image.astype(np.uint8) room_ind = room_ind.astype(np.uint8) cw_ind = cw_ind.astype(np.uint8) # debugging # merge = ind2rgb(room_ind, color_map=floorplan_fuse_map) # rm = ind2rgb(room_ind) # bd = ind2rgb(cw_ind, color_map=floorplan_boundary_map) # plt.subplot(131) # plt.imshow(image) # plt.subplot(132) # plt.imshow(rm/256.) # plt.subplot(133) # plt.imshow(bd/256.) # plt.show() return image, cw_ind, room_ind, d_ind
Example #24
Source File: DnCNN.py From DnCNN-Denoise-Gaussian-noise-TensorFlow with MIT License | 5 votes |
def test(self, cleaned_path="./TestingSet//02.png"): saver = tf.train.Saver() saver.restore(self.sess, "./save_para/DnCNN.ckpt") cleaned_img = np.reshape(np.array(misc.imresize(np.array(Image.open(cleaned_path)), [256, 256])), [1, 256, 256, 1]) noised_img = cleaned_img + np.random.normal(0, SIGMA, cleaned_img.shape) [denoised_img] = self.sess.run([self.denoised_img], feed_dict={self.clean_img: cleaned_img, self.noised_img: noised_img, self.train_phase: False}) compared = np.concatenate((cleaned_img[0, :, :, 0], noised_img[0, :, :, 0], denoised_img[0, :, :, 0]), 1) Image.fromarray(np.uint8(compared)).show()
Example #25
Source File: tools.py From hart with GNU General Public License v3.0 | 5 votes |
def read_img(path, size=None, dtype=np.float32): img = imread(path) if size is not None: img = imresize(img, size) return img.astype(dtype)
Example #26
Source File: network.py From pytorch-FPN with MIT License | 5 votes |
def _add_gt_image(self): # add back mean image = self._image_gt_summaries['image'] + cfg.PIXEL_MEANS image = imresize(image[0], self._im_info[:2] / self._im_info[2]) # BGR to RGB (opencv uses BGR) self._gt_image = image[np.newaxis, :,:,::-1].copy(order='C')
Example #27
Source File: 6_extract_features.py From Deep-Learning-for-Computer-Vision with MIT License | 5 votes |
def load_and_align_data(image_paths, image_size=160, margin=44, gpu_memory_fraction=1.0): minsize = 20 threshold = [0.6, 0.7, 0.7] factor = 0.709 print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto( gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths) img_list = [None] * nrof_samples for i in range(nrof_samples): img = misc.imread(os.path.expanduser(image_paths[i]), mode='RGB') img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = align.detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) det = np.squeeze(bounding_boxes[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] aligned = misc.imresize( cropped, (image_size, image_size), interp='bilinear') prewhitened = prewhiten(aligned) img_list[i] = prewhitened images = np.stack(img_list) return images
Example #28
Source File: data.py From udacity-SDC-baseline with MIT License | 5 votes |
def read_images(image_folder, camera, ids, image_size): prefix = path.join(image_folder, camera) imgs = [] for id in ids: img = imread(path.join(prefix, '%d.jpg' % id)) img = imresize(img, size=image_size) imgs.append(img) img_block = np.stack(imgs, axis=0) if K.image_dim_ordering() == 'th': img_block = np.transpose(img_block, axes = (0, 3, 1, 2)) return img_block
Example #29
Source File: alexnet_fine_tune.py From Deep-Learning-with-TensorFlow-Second-Edition with MIT License | 5 votes |
def next_batch(batch_size): path = os.getcwd() trainPath = path + "/trainDir/" files = [f for f in listdir(trainPath) if isfile(join(trainPath, f))] files = sample(files, len(files)) batch_x = np.ndarray([batch_size,227, 227, 3]) batch_y = np.zeros((batch_size, 2)) i = 0 for fname in files: img = (imread(join(trainPath, fname))[:,:,:3]).astype(float32) img = img - mean(img) img = imresize(img, (227,227,3), interp='bilinear', mode=None) batch_x[i] = img if "cat" in fname: batch_y[i][0] = 1 if "dog" in fname: batch_y[i][1] = 1 i+=1 if i == batch_size: yield (batch_x, batch_y) batch_x = np.ndarray([batch_size,227, 227, 3]) batch_y = np.zeros((batch_size, 3)) i=0 #Define the output number of classes : dogs and cats
Example #30
Source File: attack_util.py From robust_physical_perturbations with MIT License | 5 votes |
def read_and_resize_image(path, newsize): ''' Wrapper to allow easy substitution of resize function. Might be extended to allow for different resize methods ''' img = read_img(path) if img.shape[0] != newsize[0] or img.shape[1] != newsize[1]: return imresize(img, newsize) else: return img