Python numpy.power() Examples
The following are 30
code examples of numpy.power().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: data_helper.py From LanczosNetwork with MIT License | 7 votes |
def normalize_adj(A, is_sym=True, exponent=0.5): """ Normalize adjacency matrix is_sym=True: D^{-1/2} A D^{-1/2} is_sym=False: D^{-1} A """ rowsum = np.array(A.sum(1)) if is_sym: r_inv = np.power(rowsum, -exponent).flatten() else: r_inv = np.power(rowsum, -1.0).flatten() r_inv[np.isinf(r_inv)] = 0. if sp.isspmatrix(A): r_mat_inv = sp.diags(r_inv.squeeze()) else: r_mat_inv = np.diag(r_inv) if is_sym: return r_mat_inv.dot(A).dot(r_mat_inv) else: return r_mat_inv.dot(A)
Example #2
Source File: functional.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 7 votes |
def class_balanced_weight(beta, samples_per_class): assert 0 <= beta < 1, 'Wrong rang of beta {}'.format(beta) if not isinstance(samples_per_class, np.ndarray): if isinstance(samples_per_class, (list, tuple)): samples_per_class = np.array(samples_per_class) elif torch.is_tensor(samples_per_class): samples_per_class = samples_per_class.numpy() else: raise NotImplementedError( 'Type of samples_per_class should be {}, {} or {} but got {}'.format( (list, tuple), np.ndarray, torch.Tensor, type(samples_per_class))) assert isinstance(samples_per_class, np.ndarray) \ and isinstance(beta, numbers.Number) balanced_matrix = (1 - beta) / (1 - np.power(beta, samples_per_class)) return torch.Tensor(balanced_matrix)
Example #3
Source File: algorithmic.py From fine-lm with MIT License | 6 votes |
def zipf_distribution(nbr_symbols, alpha): """Helper function: Create a Zipf distribution. Args: nbr_symbols: number of symbols to use in the distribution. alpha: float, Zipf's Law Distribution parameter. Default = 1.5. Usually for modelling natural text distribution is in the range [1.1-1.6]. Returns: distr_map: list of float, Zipf's distribution over nbr_symbols. """ tmp = np.power(np.arange(1, nbr_symbols + 1), -alpha) zeta = np.r_[0.0, np.cumsum(tmp)] return [x / zeta[-1] for x in zeta]
Example #4
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example #5
Source File: utils.py From GST-Tacotron with MIT License | 6 votes |
def spectrogram2wav(mag): '''# Generate wave file from spectrogram''' # transpose mag = mag.T # de-noramlize mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db # to amplitude mag = np.power(10.0, mag * 0.05) # wav reconstruction wav = griffin_lim(mag) # de-preemphasis wav = signal.lfilter([1], [1, -hp.preemphasis], wav) # trim wav, _ = librosa.effects.trim(wav) return wav.astype(np.float32)
Example #6
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example #7
Source File: test_trajGen3D.py From quadcopter-simulation with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_get_poly_cc_t(self): cc = trajGen3D.get_poly_cc(4, 0, 1) expected = [1, 1, 1, 1] np.testing.assert_array_equal(cc, expected) cc = trajGen3D.get_poly_cc(8, 0, 2) expected = [1, 2, 4, 8, 16, 32, 64, 128] np.testing.assert_array_equal(cc, expected) cc = trajGen3D.get_poly_cc(8, 1, 1) expected = np.linspace(0, 7, 8) np.testing.assert_array_equal(cc, expected) t = 2 cc = trajGen3D.get_poly_cc(8, 1, t) expected = [0, 1, 2*t, 3*np.power(t,2), 4*np.power(t,3), 5*np.power(t,4), 6*np.power(t,5), 7*np.power(t,6)] np.testing.assert_array_equal(cc, expected)
Example #8
Source File: 6_bias_variance.py From deep-learning-note with MIT License | 6 votes |
def prepare_poly_data(*args, power): """ args: keep feeding in X, Xval, or Xtest will return in the same order """ def prepare(x): # expand feature df = poly_features(x, power=power) # normalization ndarr = normalize_feature(df).as_matrix() # add intercept term return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1) return [prepare(x) for x in args]
Example #9
Source File: optim.py From End-to-end-ASR-Pytorch with MIT License | 6 votes |
def speech_aug_scheduler(step, s_r, s_i, s_f, peak_lr): # Starting from 0, ramp-up to set LR and converge to 0.01*LR, w/ exp. decay final_lr_ratio = 0.01 exp_decay_lambda = -np.log10(final_lr_ratio)/(s_f-s_i) # Approx. w/ 10-based cur_step = step+1 if cur_step<s_r: # Ramp-up return peak_lr*float(cur_step)/s_r elif cur_step<s_i: # Hold return peak_lr elif cur_step<=s_f: # Decay return peak_lr*np.power(10,-exp_decay_lambda*(cur_step-s_i)) else: # Converge return peak_lr*final_lr_ratio
Example #10
Source File: tdfields.py From pyscf with Apache License 2.0 | 6 votes |
def impulseamp(self,tnow): """ Apply impulsive wave to the system Args: tnow: float Current time in A.U. Returns: amp: float Amplitude of field at time ison: bool On whether field is on or off """ amp = self.fieldamp*np.sin(self.fieldfreq*tnow)*\ (1.0/math.sqrt(2.0*3.1415*self.tau*self.tau))*\ np.exp(-1.0*np.power(tnow-self.tOn,2.0)/(2.0*self.tau*self.tau)) ison = False if (np.abs(amp)>self.field_tol): ison = True return amp,ison
Example #11
Source File: 9_anomaly_and_rec.py From deep-learning-note with MIT License | 6 votes |
def cost(params, Y, R, num_features): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) return J
Example #12
Source File: trajGen3D.py From quadcopter-simulation with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_poly_cc(n, k, t): """ This is a helper function to get the coeffitient of coefficient for n-th order polynomial with k-th derivative at time t. """ assert (n > 0 and k >= 0), "order and derivative must be positive." cc = np.ones(n) D = np.linspace(0, n-1, n) for i in range(n): for j in range(k): cc[i] = cc[i] * D[i] D[i] = D[i] - 1 if D[i] == -1: D[i] = 0 for i, c in enumerate(cc): cc[i] = c * np.power(t, D[i]) return cc # Minimum Snap Trajectory
Example #13
Source File: Transformer.py From ConvLab with MIT License | 6 votes |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super(AverageHeadAttention, self).__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout)
Example #14
Source File: Transformer.py From ConvLab with MIT License | 6 votes |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout)
Example #15
Source File: Transformer.py From ConvLab with MIT License | 6 votes |
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): ''' Sinusoid position encoding table ''' def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0. return torch.FloatTensor(sinusoid_table)
Example #16
Source File: losses.py From lightnn with Apache License 2.0 | 5 votes |
def forward(y_hat, y): assert (np.abs(np.sum(y_hat, axis=1) - 1.) < cutoff).all() assert (np.abs(np.sum(y, axis=1) - 1.) < cutoff).all() y_hat = _cutoff(y_hat) y = _cutoff(y) return -np.mean(np.sum(np.nan_to_num(y * np.power((1 - y_hat), gama) * np.log(y_hat)), axis=1))
Example #17
Source File: test_gradient.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] c = np.sum(x[:, 1:], axis=1) g = 1.0 + 9.0 * c / (self.n_var - 1) f2 = g * (1 - np.power((f1 * 1.0 / g), 2)) out["F"] = np.column_stack([f1, f2]) if "dF" in out: dF = np.zeros([x.shape[0], self.n_obj, self.n_var], dtype=np.float) dF[:, 0, 0], dF[:, 0, 1:] = 1, 0 dF[:, 1, 0] = -2 * x[:, 0] / g dF[:, 1, 1:] = (9 / (self.n_var - 1)) * (1 + x[:, 0] ** 2 / g ** 2)[:, None] out["dF"] = dF
Example #18
Source File: test_algorithms.py From pymoo with Apache License 2.0 | 5 votes |
def test_no_pareto_front_given(self): class ZDT1NoPF(ZDT): def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * np.sum(x[:, 1:], axis=1) f2 = g * (1 - np.power((f1 / g), 0.5)) out["F"] = np.column_stack([f1, f2]) algorithm = NSGA2(pop_size=100, eliminate_duplicates=True) minimize(ZDT1NoPF(), algorithm, ('n_gen', 20), seed=1, verbose=True)
Example #19
Source File: test_gradient.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = np.linspace(0, 1, n_pareto_points) return np.array([x, 1 - np.power(x, 2)]).T
Example #20
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def g1(self, X): d = self.n_var n = d - self.n_obj z = np.power(X[:, self.n_obj - 1:], n) i = np.arange(self.n_obj - 1, d) exp = 1 - np.exp(-10.0 * (z - 0.5 - i / (2 * d)) * (z - 0.5 - i / (2 * d))) distance = 1 + exp.sum(axis=1) return distance
Example #21
Source File: test_gradient.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * np.sum(x[:, 1:], axis=1) f2 = g * (1 - np.power((f1 / g), 0.5)) out["F"] = np.column_stack([f1, f2]) if "dF" in out: dF = np.zeros([x.shape[0], self.n_obj, self.n_var], dtype=np.float) dF[:, 0, 0], dF[:, 0, 1:] = 1, 0 dF[:, 1, 0] = -0.5 * np.sqrt(g / x[:, 0]) dF[:, 1, 1:] = ((9 / (self.n_var - 1)) * (1 - 0.5 * np.sqrt(x[:, 0] / g)))[:, None] out["dF"] = dF
Example #22
Source File: usage_decompose.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): out_of_bounds = np.any(repair_out_of_bounds(self, x.copy()) != x) f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * np.sum((x[:, 1:]) ** 2, axis=1) f2 = g * (1 - np.power((f1 / g), 0.5)) if out_of_bounds: f1 = np.full(x.shape[0], np.inf) f2 = np.full(x.shape[0], np.inf) out["F"] = np.column_stack([f1, f2])
Example #23
Source File: define_custom_problem_with_gradient.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * np.sum(x[:, 1:], axis=1) f2 = g * (1 - np.power((f1 / g), 0.5)) out["F"] = np.column_stack([f1, f2]) if "dF" in out: dF = np.zeros([x.shape[0], self.n_obj, self.n_var], dtype=np.float) dF[:, 0, 0], dF[:, 0, 1:] = 1, 0 dF[:, 1, 0] = -0.5 * np.sqrt(g / x[:, 0]) dF[:, 1, 1:] = ((9 / (self.n_var - 1)) * (1 - 0.5 * np.sqrt(x[:, 0] / g)))[:, None] out["dF"] = dF
Example #24
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g3(X) f0 = g * X[:, 0] f1 = g * np.sqrt(2.0 - np.power(f0 / g, 2.0)) g0 = -1.0 * (3.0 - f0 * f0 - f1) * (3.0 - 2.0 * f0 * f0 - f1) g1 = (3.0 - 0.625 * f0 * f0 - f1) * (3.0 - 7.0 * f0 * f0 - f1) g2 = -1.0 * (1.62 - 0.18 * f0 * f0 - f1) * (1.125 - 0.125 * f0 * f0 - f1) g3 = (2.07 - 0.23 * f0 * f0 - f1) * (0.63 - 0.07 * f0 * f0 - f1) out["F"] = np.column_stack([f0, f1]) out["G"] = np.column_stack([g0, g1, g2, g3])
Example #25
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g2(X) f0 = g * np.power(X[:, 0], self.n_var) f1 = g * (1.0 - np.power(f0 / g, 2.0)) g0 = -1.0 * (2.0 - 4.0 * f0 * f0 - f1) * (2.0 - 8.0 * f0 * f0 - f1) g1 = (2.0 - 2.0 * f0 * f0 - f1) * (2.0 - 16.0 * f0 * f0 - f1) g2 = (1.0 - f0 * f0 - f1) * (1.2 - 1.2 * f0 * f0 - f1) out["F"] = np.column_stack([f0, f1]) out["G"] = np.column_stack([g0, g1, g2])
Example #26
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g1(X) f0 = g * X[:, 0] f1 = g * (1.0 - np.power(f0 / g, 0.6)) t1 = (1 - 0.64 * f0 * f0 - f1) * (1 - 0.36 * f0 * f0 - f1) t2 = (1.35 * 1.35 - (f0 + 0.35) * (f0 + 0.35) - f1) * (1.15 * 1.15 - (f0 + 0.15) * (f0 + 0.15) - f1) g0 = np.minimum(t1, t2) out["F"] = np.column_stack([f0, f1]) out["G"] = g0.reshape((-1, 1))
Example #27
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g3(X) f0 = g * X[:, 0] f1 = g * np.sqrt(1 - np.power(f0 / g, 2)) with np.errstate(divide='ignore'): atan = np.arctan(f1 / f0) g0 = f0 ** 2 + f1 ** 2 - np.power(1.2 + np.abs(self.LA2(0.4, 4.0, 1.0, 16.0, atan)), 2.0) g1 = np.power(1.15 - self.LA2(0.2, 4.0, 1.0, 8.0, atan), 2.0) - f0 ** 2 - f1 ** 2 out["F"] = np.column_stack([f0, f1]) out["G"] = np.column_stack([g0, g1])
Example #28
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g1(X) f0 = g * X[:, 0] f1 = g * np.sqrt(1.0 - np.power(f0 / g, 2.0)) with np.errstate(divide='ignore'): atan = np.arctan(f1 / f0) g0 = f0 ** 2 + f1 ** 2 - np.power(1.7 - self.LA2(0.2, 2.0, 1.0, 1.0, atan), 2.0) t = 0.5 * np.pi - 2 * np.abs(atan - 0.25 * np.pi) g1 = np.power(1 + self.LA2(0.5, 6.0, 3.0, 1.0, t), 2.0) - f0 ** 2 - f1 ** 2 g2 = np.power(1 - self.LA2(0.45, 6.0, 3.0, 1.0, t), 2.0) - f0 ** 2 - f1 ** 2 out["F"] = np.column_stack([f0, f1]) out["G"] = np.column_stack([g0, g1, g2])
Example #29
Source File: mw.py From pymoo with Apache License 2.0 | 5 votes |
def g3(self, X): contrib = 2.0 * np.power( X[:, self.n_obj - 1:] + (X[:, self.n_obj - 2:-1] - 0.5) * (X[:, self.n_obj - 2:-1] - 0.5) - 1.0, 2.0) distance = 1 + contrib.sum(axis=1) return distance
Example #30
Source File: wfg.py From pymoo with Apache License 2.0 | 5 votes |
def _shape_mixed(x, A=5.0, alpha=1.0): aux = 2.0 * A * np.pi ret = np.power(1.0 - x - (np.cos(aux * x + 0.5 * np.pi) / aux), alpha) return correct_to_01(ret)