Python numpy.bmat() Examples
The following are 30
code examples of numpy.bmat().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_defmatrix.py From pySINDy with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #2
Source File: test_defmatrix.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #3
Source File: test_defmatrix.py From lambda-packs with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #4
Source File: test_defmatrix.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #5
Source File: test_defmatrix.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #6
Source File: test_defmatrix.py From lambda-packs with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #7
Source File: test_defmatrix.py From vnpy_crypto with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #8
Source File: test_defmatrix.py From Computable with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = array([[1, 2], [3, 4]]) B = array([[5, 6], [7, 8]]) Aresult = array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) Bresult = array([[5, 6, 5, 6], [7, 8, 7, 8], [5, 6, 5, 6], [7, 8, 7, 8]]) mixresult = array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(all(bmat("A,A;A,A") == Aresult)) assert_(all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_(all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(all(b2 == mixresult))
Example #9
Source File: test_defmatrix.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #10
Source File: test_defmatrix.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #11
Source File: delaunay2D.py From pyDelaunay2D with GNU General Public License v3.0 | 6 votes |
def circumcenter(self, tri): """Compute circumcenter and circumradius of a triangle in 2D. Uses an extension of the method described here: http://www.ics.uci.edu/~eppstein/junkyard/circumcenter.html """ pts = np.asarray([self.coords[v] for v in tri]) pts2 = np.dot(pts, pts.T) A = np.bmat([[2 * pts2, [[1], [1], [1]]], [[[1, 1, 1, 0]]]]) b = np.hstack((np.sum(pts * pts, axis=1), [1])) x = np.linalg.solve(A, b) bary_coords = x[:-1] center = np.dot(bary_coords, pts) # radius = np.linalg.norm(pts[0] - center) # euclidean distance radius = np.sum(np.square(pts[0] - center)) # squared distance return (center, radius)
Example #12
Source File: test_defmatrix.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #13
Source File: test_defmatrix.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #14
Source File: test_defmatrix.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #15
Source File: test_defmatrix.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #16
Source File: test_defmatrix.py From pySINDy with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #17
Source File: test_defmatrix.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #18
Source File: test_defmatrix.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #19
Source File: test_defmatrix.py From ImageFusion with MIT License | 6 votes |
def test_basic(self): A = array([[1, 2], [3, 4]]) mA = matrix(A) assert_(all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(all(B.A == D)) assert_(all(C.A == D)) E = array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(all(bmat([A, E]) == AEresult)) vec = arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #20
Source File: test_defmatrix.py From ImageFusion with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = array([[1, 2], [3, 4]]) B = array([[5, 6], [7, 8]]) Aresult = array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) Bresult = array([[5, 6, 5, 6], [7, 8, 7, 8], [5, 6, 5, 6], [7, 8, 7, 8]]) mixresult = array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(all(bmat("A,A;A,A") == Aresult)) assert_(all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_(all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(all(b2 == mixresult))
Example #21
Source File: delaunay.py From reportgen with MIT License | 6 votes |
def Circumcenter(self, tri): """Compute Circumcenter and circumradius of a triangle in 2D. Uses an extension of the method described here: http://www.ics.uci.edu/~eppstein/junkyard/circumcenter.html """ pts = np.asarray([self.coords[v] for v in tri]) pts2 = np.dot(pts, pts.T) A = np.bmat([[2 * pts2, [[1], [1], [1]]], [[[1, 1, 1, 0]]]]) b = np.hstack((np.sum(pts * pts, axis=1), [1])) x = np.linalg.solve(A, b) bary_coords = x[:-1] center = np.dot(bary_coords, pts) # radius = np.linalg.norm(pts[0] - center) # euclidean distance radius = np.sum(np.square(pts[0] - center)) # squared distance return (center, radius)
Example #22
Source File: test_defmatrix.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #23
Source File: test_defmatrix.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #24
Source File: meshretarget.py From cmt with MIT License | 6 votes |
def get_weight_matrix(sp, tp, rbf, radius): """Get the weight matrix x in Ax=B :param sp: Source control point array :param tp: Target control point aray :param rbf: Rbf function from class RBF :param radius: Smoothing parameter :return: Weight matrix """ identity = np.ones((sp.shape[0], 1)) dist = get_distance_matrix(sp, sp, rbf, radius) # Solve x for Ax=B dim = 3 a = np.bmat( [ [dist, identity, sp], [identity.T, np.zeros((1, 1)), np.zeros((1, dim))], [sp.T, np.zeros((dim, 1)), np.zeros((dim, dim))], ] ) b = np.bmat([[tp], [np.zeros((1, dim))], [np.zeros((dim, dim))]]) weights = np.linalg.solve(a, b) return weights
Example #25
Source File: test_defmatrix.py From coffeegrindsize with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #26
Source File: test_defmatrix.py From coffeegrindsize with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #27
Source File: bayer.py From Skribbl.io-Bot with MIT License | 6 votes |
def I(n, transposed=False): """Get the index matrix with side of length ``n``. Will only work if ``n`` is a power of 2. Reference: http://caca.zoy.org/study/part2.html :param int n: Power of 2 side length of matrix. :param bool transposed: :return: The index matrix. """ if n == 2: if transposed: return np.array([[0, 3], [2, 1]], 'int') else: return np.array([[0, 2], [3, 1]], 'int') else: smaller_I = I(n >> 1, transposed) if transposed: return np.bmat([[4 * smaller_I, 4 * smaller_I + 3], [4 * smaller_I + 2, 4 * smaller_I + 1]]) else: return np.bmat([[4 * smaller_I, 4 * smaller_I + 2], [4 * smaller_I + 3, 4 * smaller_I + 1]])
Example #28
Source File: test_defmatrix.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))
Example #29
Source File: test_defmatrix.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_bmat_nondefault_str(self): A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) Aresult = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) mixresult = np.array([[1, 2, 5, 6], [3, 4, 7, 8], [5, 6, 1, 2], [7, 8, 3, 4]]) assert_(np.all(bmat("A,A;A,A") == Aresult)) assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) assert_( np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) assert_(np.all(b2 == mixresult))
Example #30
Source File: test_defmatrix.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_basic(self): A = np.array([[1, 2], [3, 4]]) mA = matrix(A) assert_(np.all(mA.A == A)) B = bmat("A,A;A,A") C = bmat([[A, A], [A, A]]) D = np.array([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) assert_(np.all(B.A == D)) assert_(np.all(C.A == D)) E = np.array([[5, 6], [7, 8]]) AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) assert_(np.all(bmat([A, E]) == AEresult)) vec = np.arange(5) mvec = matrix(vec) assert_(mvec.shape == (1, 5))