Python numpy.linalg.matrix_rank() Examples
The following are 30
code examples of numpy.linalg.matrix_rank().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.linalg
, or try the search function
.
Example #1
Source File: test_linalg.py From vnpy_crypto with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) yield assert_equal, matrix_rank(ms), np.array([3, 4, 0]) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #2
Source File: test_linalg.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #3
Source File: test_linalg.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) yield assert_equal, matrix_rank(ms), np.array([3, 4, 0]) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #4
Source File: regutil.py From econtools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def find_colinear_columns( arr: np.ndarray, arr_rank: Optional[int]=None) -> List[int]: if arr_rank is None: arr_rank = la.matrix_rank(arr) K = arr.shape[1] num_colinear_cols = K - arr_rank if num_colinear_cols <= 0: raise ValueError("No colinear columns.") # Cycle through all columns; if a col doesn't increase rank, it's # colinear so flag it target_rank = 2 colinear_cols = [] for j in range(1, K): sub_rank = la.matrix_rank(arr[:, :(j + 1)]) if sub_rank == target_rank: target_rank += 1 else: colinear_cols.append(j) if len(colinear_cols) == num_colinear_cols: break # We found them all; quit. return colinear_cols
Example #5
Source File: test_linalg.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #6
Source File: test_linalg.py From coffeegrindsize with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #7
Source File: test_linalg.py From Computable with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I=np.eye(4); I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions raises error yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #8
Source File: test_linalg.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #9
Source File: multivariate_ols.py From vnpy_crypto with MIT License | 6 votes |
def _multivariate_ols_test(hypotheses, fit_results, exog_names, endog_names): def fn(L, M, C): # .. [1] https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introreg_sect012.htm params, df_resid, inv_cov, sscpr = fit_results # t1 = (L * params)M t1 = L.dot(params).dot(M) - C # H = t1'L(X'X)^L't1 t2 = L.dot(inv_cov).dot(L.T) q = matrix_rank(t2) H = t1.T.dot(inv(t2)).dot(t1) # E = M'(Y'Y - B'(X'X)B)M E = M.T.dot(sscpr).dot(M) return E, H, q, df_resid return _multivariate_test(hypotheses, exog_names, endog_names, fn)
Example #10
Source File: test_matrices.py From capytaine with GNU General Public License v3.0 | 6 votes |
def test_2_in_1_ACA_with_different_matrices(): n = 5 A = np.arange(1, 1+n**2).reshape((n, n)) + np.random.rand(n, n) B = A.T def get_row_func(i): return A[i, :], B[i, :] def get_col_func(j): return A[:, j], B[:, j] lrA, lrB = LowRankMatrix.from_rows_and_cols_functions_with_multi_ACA( get_row_func, get_col_func, n, n, nb_matrices=2, max_rank=3 ) assert matrix_rank(lrA.full_matrix()) == matrix_rank(lrB.full_matrix()) == 3
Example #11
Source File: test_linalg.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #12
Source File: test_linalg.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions raises error yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #13
Source File: test_linalg.py From pySINDy with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #14
Source File: test_linalg.py From lambda-packs with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions raises error yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #15
Source File: test_linalg.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #16
Source File: test_linalg.py From ImageFusion with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I=np.eye(4); I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions raises error yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #17
Source File: test_linalg.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) yield assert_equal, matrix_rank(ms), np.array([3, 4, 0]) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #18
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_matrix_rank(self): # Full rank matrix assert_equal(4, matrix_rank(np.eye(4))) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(matrix_rank(I), 3) # All zeros - zero rank assert_equal(matrix_rank(np.zeros((4, 4))), 0) # 1 dimension - rank 1 unless all 0 assert_equal(matrix_rank([1, 0, 0, 0]), 1) assert_equal(matrix_rank(np.zeros((4,))), 0) # accepts array-like assert_equal(matrix_rank([1]), 1) # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) assert_equal(matrix_rank(ms), np.array([3, 4, 0])) # works on scalar assert_equal(matrix_rank(1), 1)
Example #19
Source File: test_linalg.py From keras-lambda with MIT License | 6 votes |
def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions raises error yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) # works on scalar yield assert_equal, matrix_rank(1), 1
Example #20
Source File: test_linalg.py From coffeegrindsize with MIT License | 5 votes |
def test_symmetric_rank(self): assert_equal(4, matrix_rank(np.eye(4), hermitian=True)) assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True)) assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(3, matrix_rank(I, hermitian=True)) # manually supplied tolerance I[-1, -1] = 1e-8 assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8)) assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
Example #21
Source File: decompose.py From skoot with MIT License | 5 votes |
def get_R_rank(self): """Get the rank of the R matrix. Returns ------- rank : int The rank of the R matrix """ return matrix_rank(self.get_R())
Example #22
Source File: triangulation.py From adaptive with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, coords): if not is_iterable_and_sized(coords): raise TypeError("Please provide a 2-dimensional list of points") coords = list(coords) if not all(is_iterable_and_sized(coord) for coord in coords): raise TypeError("Please provide a 2-dimensional list of points") if len(coords) == 0: raise ValueError("Please provide at least one simplex") # raise now because otherwise the next line will raise a less dim = len(coords[0]) if any(len(coord) != dim for coord in coords): raise ValueError("Coordinates dimension mismatch") if dim == 1: raise ValueError("Triangulation class only supports dim >= 2") if len(coords) < dim + 1: raise ValueError("Please provide at least one simplex") coords = list(map(tuple, coords)) vectors = subtract(coords[1:], coords[0]) if matrix_rank(vectors) < dim: raise ValueError( "Initial simplex has zero volumes " "(the points are linearly dependent)" ) self.vertices = list(coords) self.simplices = set() # initialise empty set for each vertex self.vertex_to_simplices = [set() for _ in coords] # find a Delaunay triangulation to start with, then we will throw it # away and continue with our own algorithm initial_tri = scipy.spatial.Delaunay(coords) for simplex in initial_tri.simplices: self.add_simplex(simplex)
Example #23
Source File: test_linalg.py From ImageFusion with MIT License | 5 votes |
def test_reduced_rank(): # Test matrices with reduced rank rng = np.random.RandomState(20120714) for i in range(100): # Make a rank deficient matrix X = rng.normal(size=(40, 10)) X[:, 0] = X[:, 1] + X[:, 2] # Assert that matrix_rank detected deficiency assert_equal(matrix_rank(X), 9) X[:, 3] = X[:, 4] + X[:, 5] assert_equal(matrix_rank(X), 8)
Example #24
Source File: pc_utils.py From SpatioTemporalSegmentation with MIT License | 5 votes |
def build_camera_matrix(intrinsics): """Build the 3x3 camera matrix K using the given intrinsics. Equation 6.10 from HZ. """ f = intrinsics['focal_length'] pp_x = intrinsics['pp_x'] pp_y = intrinsics['pp_y'] K = np.array([[f, 0, pp_x], [0, f, pp_y], [0, 0, 1]], dtype=np.float32) # K[:, 0] *= -1. # Step 1 of Kyle assert matrix_rank(K) == 3 return K
Example #25
Source File: pymtcnn.py From pymtcnn with GNU General Public License v3.0 | 5 votes |
def findNonreflectiveSimilarity(self, uv, xy, options=None): options = {'K': 2} K = options['K'] M = xy.shape[0] x = xy[:, 0].reshape((-1, 1)) y = xy[:, 1].reshape((-1, 1)) tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) X = np.vstack((tmp1, tmp2)) u = uv[:, 0].reshape((-1, 1)) v = uv[:, 1].reshape((-1, 1)) U = np.vstack((u, v)) if rank(X) >= 2 * K: r, _, _, _ = lstsq(X, U, rcond=-1) r = np.squeeze(r) else: raise Exception('cp2tform:twoUniquePointsReq') sc = r[0] ss = r[1] tx = r[2] ty = r[3] Tinv = np.array([ [sc, -ss, 0], [ss, sc, 0], [tx, ty, 1] ]) T = inv(Tinv) T[:, 2] = np.array([0, 0, 1]) return T, Tinv
Example #26
Source File: test_linalg.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_reduced_rank(): # Test matrices with reduced rank rng = np.random.RandomState(20120714) for i in range(100): # Make a rank deficient matrix X = rng.normal(size=(40, 10)) X[:, 0] = X[:, 1] + X[:, 2] # Assert that matrix_rank detected deficiency assert_equal(matrix_rank(X), 9) X[:, 3] = X[:, 4] + X[:, 5] assert_equal(matrix_rank(X), 8)
Example #27
Source File: timeseries.py From PyRate with Apache License 2.0 | 5 votes |
def _remove_rank_def_rows(b_mat, nvelpar, ifgv, sel): """ Remove rank deficient rows of design matrix """ _, _, e_var = qr(b_mat, mode='economic', pivoting=True) licols = e_var[matrix_rank(b_mat):nvelpar] [rmrow, _] = where(b_mat[:, licols] != 0) b_mat = delete(b_mat, rmrow, axis=0) ifgv = delete(ifgv, rmrow) sel = delete(sel, rmrow) return b_mat, ifgv, sel, rmrow
Example #28
Source File: test_linalg.py From coffeegrindsize with MIT License | 5 votes |
def test_reduced_rank(): # Test matrices with reduced rank rng = np.random.RandomState(20120714) for i in range(100): # Make a rank deficient matrix X = rng.normal(size=(40, 10)) X[:, 0] = X[:, 1] + X[:, 2] # Assert that matrix_rank detected deficiency assert_equal(matrix_rank(X), 9) X[:, 3] = X[:, 4] + X[:, 5] assert_equal(matrix_rank(X), 8)
Example #29
Source File: symmetry.py From quantum-honeycomp with GNU General Public License v3.0 | 5 votes |
def retain_independent(M): """Return linearly independent vectors""" from numpy.linalg import matrix_rank dim = len(M) tol = 1e-4 LI=[] for i in range(dim): tmp=[] for r in LI: tmp.append(r) tmp.append(M[i]) if matrix_rank(tmp,tol=tol)>len(LI): LI.append(M[i]) return LI
Example #30
Source File: test_linalg.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_symmetric_rank(self): assert_equal(4, matrix_rank(np.eye(4), hermitian=True)) assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True)) assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. assert_equal(3, matrix_rank(I, hermitian=True)) # manually supplied tolerance I[-1, -1] = 1e-8 assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8)) assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))