Python pylab.get_cmap() Examples
The following are 10
code examples of pylab.get_cmap().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pylab
, or try the search function
.
Example #1
Source File: colors.py From geoplotlib with MIT License | 6 votes |
def create_set_cmap(values, cmap_name, alpha=255): """ return a dict of colors corresponding to the unique values :param values: values to be mapped :param cmap_name: colormap name :param alpha: color alpha :return: dict of colors corresponding to the unique values """ unique_values = list(set(values)) shuffle(unique_values) from pylab import get_cmap cmap = get_cmap(cmap_name) d = {} for i in range(len(unique_values)): d[unique_values[i]] = _convert_color_format(cmap(1.*i/len(unique_values)), alpha) return d
Example #2
Source File: __init__.py From EDeN with MIT License | 5 votes |
def draw_adjacency_graph(adjacency_matrix, node_color=None, size=10, layout='graphviz', prog='neato', node_size=80, colormap='autumn'): """draw_adjacency_graph.""" graph = nx.from_scipy_sparse_matrix(adjacency_matrix) plt.figure(figsize=(size, size)) plt.grid(False) plt.axis('off') if layout == 'graphviz': pos = nx.graphviz_layout(graph, prog=prog) else: pos = nx.spring_layout(graph) if len(node_color) == 0: node_color = 'gray' nx.draw_networkx_nodes(graph, pos, node_color=node_color, alpha=0.6, node_size=node_size, cmap=plt.get_cmap(colormap)) nx.draw_networkx_edges(graph, pos, alpha=0.5) plt.show() # draw a whole set of graphs::
Example #3
Source File: colors.py From geoplotlib with MIT License | 5 votes |
def __init__(self, cmap_name, alpha=255, levels=10): """ Converts continuous values into colors using matplotlib colorscales :param cmap_name: colormap name :param alpha: color alpha :param levels: discretize the colorscale into levels """ from pylab import get_cmap self.cmap = get_cmap(cmap_name) self.alpha = alpha self.levels = levels self.mapping = {}
Example #4
Source File: bird_vis.py From cmr with MIT License | 5 votes |
def draw_kp(kp, img, radius=None): """ kp is 15 x 2 or 3 numpy. img can be either RGB or Gray Draws bird points. """ if radius is None: radius = max(4, (np.mean(img.shape[:2]) * 0.01).astype(int)) num_kp = kp.shape[0] # Generate colors import pylab cm = pylab.get_cmap('gist_rainbow') colors = 255 * np.array([cm(1. * i / num_kp)[:3] for i in range(num_kp)]) white = np.ones(3) * 255 image = img.copy() if isinstance(image.reshape(-1)[0], np.float32): # Convert to 255 and np.uint8 for cv2.. image = (image * 255).astype(np.uint8) kp = np.round(kp).astype(int) for kpi, color in zip(kp, colors): # This sometimes causes OverflowError,, if kpi[2] == 0: continue cv2.circle(image, (kpi[0], kpi[1]), radius + 1, white, -1) cv2.circle(image, (kpi[0], kpi[1]), radius, color, -1) # import matplotlib.pyplot as plt # plt.ion() # plt.clf() # plt.imshow(image) # import ipdb; ipdb.set_trace() return image
Example #5
Source File: galaxy10.py From astroNN with MIT License | 4 votes |
def galaxy10_confusion(confusion_mat): """ NAME: galaxy10_confusion PURPOSE: to plot confusion matrix INPUT: confusion_mat (ndarray): An integer 0-9 OUTPUT: (string): Name of the class HISTORY: 2018-Feb-11 - Written - Henry Leung (University of Toronto) """ import pylab as plt conf_arr = confusion_mat.astype(int) norm_conf = [] a = np.max(conf_arr) for i in conf_arr: tmp_arr = [] for j in i: tmp_arr.append(float(j) / float(a)) norm_conf.append(tmp_arr) fig, ax = plt.subplots(1, figsize=(10, 10.5), dpi=100) fig.suptitle("Confusion Matrix for Galaxy10 trained by astroNN", fontsize=18) ax.set_aspect(1) ax.imshow(np.array(norm_conf), cmap=plt.get_cmap('Blues'), interpolation='nearest') width, height = conf_arr.shape for x in range(width): for y in range(height): ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment='center', verticalalignment='center') alphabet = '0123456789' plt.xticks(range(width), alphabet[:width], fontsize=20) plt.yticks(range(height), alphabet[:height], fontsize=20) ax.set_ylabel('Prediction class by astroNN', fontsize=18) ax.set_xlabel('True class', fontsize=18) fig.tight_layout(rect=[0, 0.00, 0.8, 0.96]) fig.show() return None
Example #6
Source File: analyser.py From spotpy with MIT License | 4 votes |
def plot_heatmap_griewank(results,algorithms, fig_name='heatmap_griewank.png'): """Example Plot as seen in the SPOTPY Documentation""" import matplotlib.pyplot as plt from matplotlib import ticker from matplotlib import cm font = {'family' : 'calibri', 'weight' : 'normal', 'size' : 20} plt.rc('font', **font) subplots=len(results) xticks=[-40,0,40] yticks=[-40,0,40] fig=plt.figure(figsize=(16,6)) N = 2000 x = np.linspace(-50.0, 50.0, N) y = np.linspace(-50.0, 50.0, N) x, y = np.meshgrid(x, y) z=1+ (x**2+y**2)/4000 - np.cos(x/np.sqrt(2))*np.cos(y/np.sqrt(3)) cmap = plt.get_cmap('autumn') rows=2.0 for i in range(subplots): amount_row = int(np.ceil(subplots/rows)) ax = plt.subplot(rows, amount_row, i+1) CS = ax.contourf(x, y, z,locator=ticker.LogLocator(),cmap=cm.rainbow) ax.plot(results[i]['par0'],results[i]['par1'],'ko',alpha=0.2,markersize=1.9) ax.xaxis.set_ticks([]) if i==0: ax.set_ylabel('y') if i==subplots/rows: ax.set_ylabel('y') if i>=subplots/rows: ax.set_xlabel('x') ax.xaxis.set_ticks(xticks) if i!=0 and i!=subplots/rows: ax.yaxis.set_ticks([]) ax.set_title(algorithms[i]) fig.savefig(fig_name, bbox_inches='tight')
Example #7
Source File: main.py From scTDA with GNU General Public License v3.0 | 4 votes |
def hierarchical_clustering(mat, method='average', cluster_distance=True, labels=None, thres=0.65): """ Performs hierarchical clustering based on distance matrix 'mat' using the method specified by 'method'. Optional argument 'labels' may specify a list of labels. If cluster_distance is True, the clustering is performed on the distance matrix using euclidean distance. Otherwise, mat specifies the distance matrix for clustering. Adapted from http://stackoverflow.com/questions/7664826/how-to-get-flat-clustering-corresponding-to-color-clusters-in-the-dendrogram-cre Not subjected to copyright. """ D = numpy.array(mat) if not cluster_distance: Dtriangle = scipy.spatial.distance.squareform(D) else: Dtriangle = scipy.spatial.distance.pdist(D, metric='euclidean') fig = pylab.figure(figsize=(8, 8)) ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6]) Y = sch.linkage(Dtriangle, method=method) Z1 = sch.dendrogram(Y, orientation='right', color_threshold=thres*max(Y[:, 2])) ax1.set_xticks([]) ax1.set_yticks([]) ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2]) Y = sch.linkage(Dtriangle, method=method) Z2 = sch.dendrogram(Y, color_threshold=thres*max(Y[:, 2])) ax2.set_xticks([]) ax2.set_yticks([]) axmatrix = fig.add_axes([0.3, 0.1, 0.6, 0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = D[idx1, :] D = D[:, idx2] im = axmatrix.matshow(D, aspect='auto', origin='lower', cmap=pylab.get_cmap('jet_r')) if labels is None: axmatrix.set_xticks([]) axmatrix.set_yticks([]) else: axmatrix.set_xticks(range(len(labels))) lab = [labels[idx1[m]] for m in range(len(labels))] axmatrix.set_xticklabels(lab) axmatrix.set_yticks(range(len(labels))) axmatrix.set_yticklabels(lab) for tick in pylab.gca().xaxis.iter_ticks(): tick[0].label2On = False tick[0].label1On = True tick[0].label1.set_rotation('vertical') for tick in pylab.gca().yaxis.iter_ticks(): tick[0].label2On = True tick[0].label1On = False axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.6]) pylab.colorbar(im, cax=axcolor) pylab.show() return Z1
Example #8
Source File: vis_corex.py From bio_corex with Apache License 2.0 | 4 votes |
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8): ns, n = data.shape if labels is None: labels = list(map(str, range(n))) ncol = 5 # ncol = 4 nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol)) #nrow=1 #pylab.rcParams.update({'figure.autolayout': True}) fig, axs = pylab.subplots(nrow, ncol) fig.set_size_inches(5 * ncol, 5 * nrow) #fig.set_canvas(pylab.gcf().canvas) pairs = list(combinations(range(n), 2)) #[:4] pairs = sorted(pairs, key=lambda q: q[0]**2+q[1]**2) # Puts stronger relationships first if colors is not None: colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)).clip(1e-7) for ax, pair in zip(axs.flat, pairs): if latent is None: ax.scatter(data[:, pair[0]], data[:, pair[1]], marker='.', edgecolors='none', alpha=alpha) else: # cs = 'rgbcmykrgbcmyk' markers = 'x+.o,<>^^<>,+x.' for j, ind in enumerate(np.unique(latent)): inds = (latent == ind) ax.scatter(data[inds, pair[0]], data[inds, pair[1]], c=colors[inds], cmap=pylab.get_cmap("jet"), marker=markers[j], alpha=0.5, edgecolors='none', vmin=0, vmax=1) ax.set_xlabel(shorten(labels[pair[0]])) ax.set_ylabel(shorten(labels[pair[1]])) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.scatter(data[:, 0], data[:, 1], marker='.') pylab.rcParams['font.size'] = 12 #6 pylab.draw() #fig.set_tight_layout(True) fig.tight_layout() for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.set_visible(False) filename = outfile + '.png' if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) fig.savefig(outfile + '.png') #df') pylab.close('all') return True
Example #9
Source File: vis_corex.py From LinearCorex with GNU Affero General Public License v3.0 | 4 votes |
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''): ns, n = data.shape if labels is None: labels = list(map(str, list(range(n)))) ncol = 5 nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol)) fig, axs = pylab.subplots(nrow, ncol) fig.set_size_inches(5 * ncol, 5 * nrow) pairs = list(combinations(list(range(n)), 2)) if colors is not None: colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)) for ax, pair in zip(axs.flat, pairs): diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]]) diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]]) ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x]) ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y]) ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"), marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1) ax.set_xlabel(shorten(labels[pair[0]])) ax.set_ylabel(shorten(labels[pair[1]])) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.scatter(data[:, 0], data[:, 1], marker='.') fig.suptitle(title, fontsize=16) pylab.rcParams['font.size'] = 12 #6 # pylab.draw() # fig.set_tight_layout(True) pylab.tight_layout() pylab.subplots_adjust(top=0.95) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.set_visible(False) filename = outfile + '.png' if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) fig.savefig(outfile + '.png') pylab.close('all') return True # Hierarchical graph visualization utilities
Example #10
Source File: bird_vis.py From cmr with MIT License | 4 votes |
def vis_vert2kp(verts, vert2kp, face, mvs=None): """ verts: N x 3 vert2kp: K x N For each keypoint, visualize its weights on each vertex. Base color is white, pick a color for each kp. Using the weights, interpolate between base and color. """ from psbody.mesh.mesh import Mesh from psbody.mesh.meshviewer import MeshViewer, MeshViewers from psbody.mesh.sphere import Sphere num_kp = vert2kp.shape[0] if mvs is None: mvs = MeshViewers((4, 4)) # mv = MeshViewer() # Generate colors import pylab cm = pylab.get_cmap('gist_rainbow') cms = 255 * np.array([cm(1. * i / num_kp)[:3] for i in range(num_kp)]) base = np.zeros((1, 3)) * 255 # base = np.ones((1, 3)) * 255 verts = convert2np(verts) vert2kp = convert2np(vert2kp) num_row = len(mvs) num_col = len(mvs[0]) colors = [] for k in range(num_kp): # Nx1 for this kp. weights = vert2kp[k].reshape(-1, 1) # So we can see it,, weights = weights / weights.max() cm = cms[k, None] # Simple linear interpolation,, # cs = np.uint8((1-weights) * base + weights * cm) # In [0, 1] cs = ((1 - weights) * base + weights * cm) / 255. colors.append(cs) # sph = [Sphere(center=jc, radius=.03).to_mesh(c/255.) for jc, c in zip(vert,cs)] # mvs[int(k/4)][k%4].set_dynamic_meshes(sph) mvs[int(k % num_row)][int(k / num_row)].set_dynamic_meshes( [Mesh(verts, face, vc=cs)])