Python ctypes.c_longlong() Examples
The following are 30
code examples of ctypes.c_longlong().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
ctypes
, or try the search function
.
Example #1
Source File: _internal.py From twitter-stock-recommendation with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #2
Source File: _internal.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #3
Source File: _internal.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #4
Source File: _internal.py From Computable with MIT License | 6 votes |
def _getintp_ctype(): from .multiarray import dtype val = _getintp_ctype.cache if val is not None: return val char = dtype('p').char import ctypes if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #5
Source File: _internal.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #6
Source File: _internal.py From vnpy_crypto with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #7
Source File: __init__.py From afnumpy with BSD 2-Clause "Simplified" License | 6 votes |
def inplace_setitem(self, key, val): try: n_dims = self.numdims() if (arrayfire.util._is_number(val)): tdims = arrayfire.array._get_assign_dims(key, self.dims()) other_arr = arrayfire.array.constant_array(val, tdims[0], tdims[1], tdims[2], tdims[3], self.type()) del_other = True else: other_arr = val.arr del_other = False inds = arrayfire.array._get_indices(key) # In place assignment. Notice passing a pointer to self.arr as output arrayfire.util.safe_call(arrayfire.backend.get().af_assign_gen(ctypes.pointer(self.arr), self.arr, ctypes.c_longlong(n_dims), inds.pointer, other_arr)) if del_other: arrayfire.safe_call(arrayfire.backend.get().af_release_array(other_arr)) except RuntimeError as e: raise IndexError(str(e))
Example #8
Source File: _internal.py From lambda-packs with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #9
Source File: _internal.py From Fluid-Designer with GNU General Public License v3.0 | 6 votes |
def _getintp_ctype(): from .multiarray import dtype val = _getintp_ctype.cache if val is not None: return val char = dtype('p').char import ctypes if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #10
Source File: _internal.py From pySINDy with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #11
Source File: _internal.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #12
Source File: _internal.py From ImageFusion with MIT License | 6 votes |
def _getintp_ctype(): from .multiarray import dtype val = _getintp_ctype.cache if val is not None: return val char = dtype('p').char import ctypes if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #13
Source File: _internal.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #14
Source File: archive_read.py From PyEasyArchive with GNU General Public License v2.0 | 6 votes |
def _read_by_block(archive_res): buffer_ = ctypes.c_char_p() num = ctypes.c_size_t() offset = ctypes.c_longlong() while 1: r = libarchive.calls.archive_read.c_archive_read_data_block( archive_res, ctypes.cast(ctypes.byref(buffer_), ctypes.POINTER(ctypes.c_void_p)), ctypes.byref(num), ctypes.byref(offset)) if r == libarchive.constants.archive.ARCHIVE_OK: block = ctypes.string_at(buffer_, num.value) assert len(block) == num.value yield block elif r == libarchive.constants.archive.ARCHIVE_EOF: break else: raise ValueError("Read failed (archive_read_data_block): (%d)" % (r,))
Example #15
Source File: _internal.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #16
Source File: elbow_wrapper.py From pyclustering with GNU General Public License v3.0 | 6 votes |
def elbow(sample, kmin, kmax, initializer, random_state): random_state = random_state or -1 pointer_data = package_builder(sample, c_double).create() ccore = ccore_library.get() if initializer == elbow_center_initializer.KMEANS_PLUS_PLUS: ccore.elbow_method_ikpp.restype = POINTER(pyclustering_package) package = ccore.elbow_method_ikpp(pointer_data, c_size_t(kmin), c_size_t(kmax), c_longlong(random_state)) elif initializer == elbow_center_initializer.RANDOM: ccore.elbow_method_irnd.restype = POINTER(pyclustering_package) package = ccore.elbow_method_irnd(pointer_data, c_size_t(kmin), c_size_t(kmax), c_longlong(random_state)) else: raise ValueError("Not supported type of center initializer '" + str(initializer) + "'.") results = package_extractor(package).extract() ccore.free_pyclustering_package(package) return (results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_AMOUNT][0], results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_WCE])
Example #17
Source File: WnfDump.py From wnfun with BSD 2-Clause "Simplified" License | 6 votes |
def DoWrite(StateName, Data): StateName = ctypes.c_longlong(int(StateName, 16)) dataBuffer = ctypes.c_char_p(Data) bufferSize = len(Data) status = ZwUpdateWnfStateData(ctypes.byref(StateName), dataBuffer, bufferSize, 0, 0, 0, 0) status = ctypes.c_ulong(status).value if status == 0: return True else: print('[Error] Could not write for this statename: 0x{:x}'.format(status)) return False ######################################################################################### ############### MAIN ###############
Example #18
Source File: wnfcom.py From wnfun with BSD 2-Clause "Simplified" License | 6 votes |
def SetStateName(self, WnfName): tmpName = 0 try: tmpName = g_WellKnownWnfNames[WnfName.upper()] except: if len(WnfName)>2 and WnfName[1] == 'x': WnfName = WnfName[2:] try: tmpName = int(WnfName, 16) except: tmpName = 0 self.pprint("[Error] Could not validate the provided name") return False self.StateName = ctypes.c_longlong(tmpName) self.internalName.value = ctypes.c_ulonglong(tmpName ^ WNF_STATE_KEY) return True
Example #19
Source File: _internal.py From coffeegrindsize with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #20
Source File: nervanamkl.py From neon with Apache License 2.0 | 6 votes |
def fprop_relu(self, layer, x, slope): if layer is None: layer = layer_mkl.ReluLayerMKL() if not hasattr(x, 'shape5D'): return self.maximum(x, 0) + slope * self.minimum(0, x) if slope != 0: self.convert(x) x.clean_mkl() return self.maximum(x, 0) + slope * self.minimum(0, x) if x.shape5D is not None: C, D, H, W, N = x.shape5D else: C, N = x._tensor.shape D, H, W = 1, 1, 1 x.shape5D = C, D, H, W, N layer.shape5D = C, D, H, W, N primitives = c_longlong(layer.dnnPrimitives.ctypes.data) if x.primitive[3] == 0: layer.inputMKL = False self.mklEngine.Relu_f(x.get_prim(), primitives, layer.initOk_f, N, C, H, W) layer.initOk_f = 1 return x
Example #21
Source File: nervanamkl.py From neon with Apache License 2.0 | 6 votes |
def compound_bprop_bn(self, deltas, grad_gamma, grad_beta, error, inputs, xsum, xvar, gamma, eps, binary=False, layer=None): if not layer or not isinstance(layer.in_shape, tuple): super(NervanaMKL, self).compound_bprop_bn(deltas, grad_gamma, grad_beta, error, inputs, xsum, xvar, gamma, eps, binary, layer) return primitives = c_longlong(layer.dnnPrimitives.ctypes.data) self.mklEngine.BatchNormBackp(inputs.get_prim(), error.get_prim(), deltas.get_prim(), grad_gamma.get_prim(), grad_beta.get_prim(), layer.in_shape[0], primitives, layer.init_b) layer.init_b = 1 deltas.shape5D = layer.shape5D
Example #22
Source File: _internal.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #23
Source File: api.py From aws-builders-fair-projects with Apache License 2.0 | 6 votes |
def _set_input(self, name, data): """Set the input using the input name with data Parameters __________ name : str The name of an input. data : list of numbers The data to be set. """ in_data = np.ascontiguousarray(data, dtype=np.float32) shape = np.array(in_data.shape, dtype=np.int64) _check_call(_LIB.SetDLRInput(byref(self.handle), c_char_p(name.encode('utf-8')), shape.ctypes.data_as(POINTER(c_longlong)), in_data.ctypes.data_as(POINTER(c_float)), c_int(in_data.ndim))) if self.backend == 'treelite': self._lazy_init_output_shape()
Example #24
Source File: api.py From aws-builders-fair-projects with Apache License 2.0 | 6 votes |
def _get_output_size_dim(self, index): """Get the size and the dimenson of the index-th output. Parameters __________ index : int The index of the output. Returns _______ size : int The size of the index-th output. dim : int The dimension of the index-th output. """ idx = ctypes.c_int(index) size = ctypes.c_longlong() dim = ctypes.c_int() _check_call(_LIB.GetDLROutputSizeDim(byref(self.handle), idx, byref(size), byref(dim))) return size.value, dim.value
Example #25
Source File: api.py From aws-builders-fair-projects with Apache License 2.0 | 6 votes |
def _get_output_shape(self, index): """Get the shape for the index-th output. Parameters __________ index : int The index of the output. Returns _______ shape : list The shape of the index-th output. """ size, dim = self._get_output_size_dim(index) if not self.output_size_dim: self.output_size_dim = [(0, 0)] * self._get_num_outputs() self.output_size_dim[index] = (size, dim) shape = np.zeros(dim, dtype=np.int64) _check_call(_LIB.GetDLROutputShape(byref(self.handle), c_int(index), shape.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)))) return shape
Example #26
Source File: _internal.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #27
Source File: _internal.py From recruit with Apache License 2.0 | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #28
Source File: nervanamkl.py From neon with Apache License 2.0 | 5 votes |
def sum_tensor(self, sum, layer_num, tensors, output, shape5D): C, D, H, W, N = shape5D inp = c_longlong(tensors.ctypes.data) size = c_longlong(np.prod(output.shape)) prim = c_longlong(sum.ctypes.data) self.mklEngine.MklSumTensor(layer_num, inp, size, output.get_prim(), prim, N, C, H, W)
Example #29
Source File: nervanamkl.py From neon with Apache License 2.0 | 5 votes |
def compound_fprop_bn(self, x, xsum, xvar, gmean, gvar, gamma, beta, y, eps, rho, compute_batch_sum, accumbeta=0.0, relu=False, binary=False, inference=False, outputs=None, layer=None): if layer is None or outputs is None or not isinstance(layer.in_shape, tuple): super(NervanaMKL, self).compound_fprop_bn(x, xsum, xvar, gmean, gvar, gamma, beta, y, eps, rho, compute_batch_sum, accumbeta, relu, binary, inference, outputs, layer ) return primitives = c_longlong(layer.dnnPrimitives.ctypes.data) if len(layer.in_shape) == 3: C = layer.in_shape[0] H = layer.in_shape[1] W = layer.in_shape[2] D = 1 elif len(layer.in_shape) == 2: C = layer.in_shape[0] H = layer.in_shape[1] W = layer.in_shape[1] D = 1 elif len(layer.in_shape) == 4: C = layer.in_shape[0] H = layer.in_shape[1] W = layer.in_shape[2] D = layer.in_shape[3] N = int(x.shape[-1]) // H // W // D # this is/corresponds to the batch size gmean = c_longlong(gmean._tensor.ctypes.data) gvar = c_longlong(gvar._tensor.ctypes.data) self.mklEngine.BatchNormFprop(x.get_prim(), outputs.get_prim(), gamma.get_prim(), beta.get_prim(), gmean, gvar, c_float(rho), N, C, H, W * D, c_double(eps), primitives, layer.init_f, c_int(inference)) layer.init_f = 1 layer.shape5D = outputs.shape5D = C, D, H, W, N
Example #30
Source File: _internal.py From coffeegrindsize with MIT License | 5 votes |
def strides_as(self, obj): """ Return the strides tuple as an array of some other c-types type. For example: ``self.strides_as(ctypes.c_longlong)``. """ if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.strides)