Python numpy.min() Examples
The following are 30
code examples of numpy.min().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: quantization.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def collect(self, name, arr): """Callback function for collecting min and max values from an NDArray.""" name = py_str(name) if self.include_layer is not None and not self.include_layer(name): return handle = ctypes.cast(arr, NDArrayHandle) arr = NDArray(handle, writable=False) min_range = ndarray.min(arr).asscalar() max_range = ndarray.max(arr).asscalar() if name in self.min_max_dict: cur_min_max = self.min_max_dict[name] self.min_max_dict[name] = (min(cur_min_max[0], min_range), max(cur_min_max[1], max_range)) else: self.min_max_dict[name] = (min_range, max_range) if self.logger is not None: self.logger.info("Collecting layer %s output min_range=%f, max_range=%f" % (name, min_range, max_range))
Example #2
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_cifar100(tfrecord_dir, cifar100_dir): print('Loading CIFAR-100 from "%s"' % cifar100_dir) import pickle with open(os.path.join(cifar100_dir, 'train'), 'rb') as file: data = pickle.load(file, encoding='latin1') images = data['data'].reshape(-1, 3, 32, 32) labels = np.array(data['fine_labels']) assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8 assert labels.shape == (50000,) and labels.dtype == np.int32 assert np.min(images) == 0 and np.max(images) == 255 assert np.min(labels) == 0 and np.max(labels) == 99 onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): tfr.add_image(images[order[idx]]) tfr.add_labels(onehot[order]) #----------------------------------------------------------------------------
Example #3
Source File: test_bayestar.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def test_equ_random_sample_scalar(self): """ Test that random sample of reddening at arbitary distance is actually from the set of possible reddening samples at that distance. Uses vector of coordinates/distances as input. Uses single set of coordinates/distance as input. """ for d in self._test_data: # Prepare coordinates (with random distances) l = d['l']*units.deg b = d['b']*units.deg dm = 3. + (25.-3.)*np.random.random() dist = 10.**(dm/5.-2.) c = coords.SkyCoord(l, b, distance=dist*units.kpc, frame='galactic') ebv_data = self._interp_ebv(d, dist) ebv_calc = self._bayestar(c, mode='random_sample') d_ebv = np.min(np.abs(ebv_data[:] - ebv_calc)) np.testing.assert_allclose(d_ebv, 0., atol=0.001, rtol=0.0001)
Example #4
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123): print('Loading MNIST from "%s"' % mnist_dir) import gzip with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file: images = np.frombuffer(file.read(), np.uint8, offset=16) images = images.reshape(-1, 28, 28) images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0) assert images.shape == (60000, 32, 32) and images.dtype == np.uint8 assert np.min(images) == 0 and np.max(images) == 255 with TFRecordExporter(tfrecord_dir, num_images) as tfr: rnd = np.random.RandomState(random_seed) for idx in range(num_images): tfr.add_image(images[rnd.randint(images.shape[0], size=3)]) #----------------------------------------------------------------------------
Example #5
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_mnist(tfrecord_dir, mnist_dir): print('Loading MNIST from "%s"' % mnist_dir) import gzip with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file: images = np.frombuffer(file.read(), np.uint8, offset=16) with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file: labels = np.frombuffer(file.read(), np.uint8, offset=8) images = images.reshape(-1, 1, 28, 28) images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0) assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8 assert labels.shape == (60000,) and labels.dtype == np.uint8 assert np.min(images) == 0 and np.max(images) == 255 assert np.min(labels) == 0 and np.max(labels) == 9 onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): tfr.add_image(images[order[idx]]) tfr.add_labels(onehot[order]) #----------------------------------------------------------------------------
Example #6
Source File: test_bayestar.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def test_equ_random_sample_nodist_vector(self): """ Test that a random sample of the reddening vs. distance curve is drawn from the full set of samples. Uses vector of coordinates as input. """ # Prepare coordinates l = [d['l']*units.deg for d in self._test_data] b = [d['b']*units.deg for d in self._test_data] c = coords.SkyCoord(l, b, frame='galactic') ebv_data = np.array([d['samples'] for d in self._test_data]) ebv_calc = self._bayestar(c, mode='random_sample') # print 'vector random sample:' # print 'ebv_data.shape = {}'.format(ebv_data.shape) # print 'ebv_calc.shape = {}'.format(ebv_calc.shape) # print ebv_data[0] # print ebv_calc[0] d_ebv = np.min(np.abs(ebv_data[:,:,:] - ebv_calc[:,None,:]), axis=1) np.testing.assert_allclose(d_ebv, 0., atol=0.001, rtol=0.0001)
Example #7
Source File: nav_env.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_optimal_action(self, current_node_ids, step_number): """Returns the optimal action from the current node.""" goal_number = step_number / self.task_params.num_steps gtG = self.task.gtG a = np.zeros((len(current_node_ids), self.task_params.num_actions), dtype=np.int32) d_dict = self.episode.dist_to_goal[goal_number] for i, c in enumerate(current_node_ids): neigh = gtG.vertex(c).out_neighbours() neigh_edge = gtG.vertex(c).out_edges() ds = np.array([d_dict[i][int(x)] for x in neigh]) ds_min = np.min(ds) for i_, e in enumerate(neigh_edge): if ds[i_] == ds_min: _ = gtG.ep['action'][e] a[i, _] = 1 return a
Example #8
Source File: labels.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def cmap(self, data=None): ''' lblidx.cmap() yields a colormap for the given label index object that assumes that the data being plotted will be rescaled such that label 0 is 0 and the highest label value in the label index is equal to 1. lblidx.cmap(data) yields a colormap that will correctly color the labels given in data if data is scaled such that its minimum and maximum value are 0 and 1. ''' import matplotlib.colors from_list = matplotlib.colors.LinearSegmentedColormap.from_list if data is None: return self.colormap data = np.asarray(data).flatten() (vmin,vmax) = (np.min(data), np.max(data)) ii = np.argsort(self.ids) ids = np.asarray(self.ids)[ii] if vmin == vmax: (vmin,vmax,ii) = (vmin-0.5, vmax+0.5, vmin) clr = self.color_lookup(ii) return from_list('label1', [(0, clr), (1, clr)]) q = (ids >= vmin) & (ids <= vmax) ids = ids[q] clrs = self.color_lookup(ids) vals = (ids - vmin) / (vmax - vmin) return from_list('label%d' % len(vals), list(zip(vals, clrs)))
Example #9
Source File: cgp.py From cgp-cnn with MIT License | 6 votes |
def neutral_mutation(self, mutation_rate=0.01): for n in range(self.net_info.node_num + self.net_info.out_num): t = self.gene[n][0] # mutation for type gene type_num = self.net_info.func_type_num if n < self.net_info.node_num else self.net_info.out_type_num if not self.is_active[n] and np.random.rand() < mutation_rate and type_num > 1: self.gene[n][0] = self.__mutate(self.gene[n][0], 0, type_num) # mutation for connection gene col = np.min((int(n / self.net_info.rows), self.net_info.cols)) max_connect_id = col * self.net_info.rows + self.net_info.input_num min_connect_id = (col - self.net_info.level_back) * self.net_info.rows + self.net_info.input_num \ if col - self.net_info.level_back >= 0 else 0 in_num = self.net_info.func_in_num[t] if n < self.net_info.node_num else self.net_info.out_in_num[t] for i in range(self.net_info.max_in_num): if (not self.is_active[n] or i >= in_num) and np.random.rand() < mutation_rate \ and max_connect_id - min_connect_id > 1: self.gene[n][i+1] = self.__mutate(self.gene[n][i+1], min_connect_id, max_connect_id) self.check_active() return False
Example #10
Source File: cgp.py From cgp-cnn with MIT License | 6 votes |
def mutation(self, mutation_rate=0.01): active_check = False for n in range(self.net_info.node_num + self.net_info.out_num): t = self.gene[n][0] # mutation for type gene type_num = self.net_info.func_type_num if n < self.net_info.node_num else self.net_info.out_type_num if np.random.rand() < mutation_rate and type_num > 1: self.gene[n][0] = self.__mutate(self.gene[n][0], 0, type_num) if self.is_active[n]: active_check = True # mutation for connection gene col = np.min((int(n / self.net_info.rows), self.net_info.cols)) max_connect_id = col * self.net_info.rows + self.net_info.input_num min_connect_id = (col - self.net_info.level_back) * self.net_info.rows + self.net_info.input_num \ if col - self.net_info.level_back >= 0 else 0 in_num = self.net_info.func_in_num[t] if n < self.net_info.node_num else self.net_info.out_in_num[t] for i in range(self.net_info.max_in_num): if np.random.rand() < mutation_rate and max_connect_id - min_connect_id > 1: self.gene[n][i+1] = self.__mutate(self.gene[n][i+1], min_connect_id, max_connect_id) if self.is_active[n] and i < in_num: active_check = True self.check_active() return active_check
Example #11
Source File: dataset.py From Deep_VoiceChanger with MIT License | 6 votes |
def wave2input_image(wave, window, pos=0, pad=0): wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254] wave_image *= window spectrum_image = np.fft.fft(wave_image, axis=1) input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32) np.clip(input_image, 1000, None, out=input_image) np.log(input_image, out=input_image) input_image += bias input_image /= scale if np.max(input_image) > 0.95: print('input image max bigger than 0.95', np.max(input_image)) if np.min(input_image) < 0.05: print('input image min smaller than 0.05', np.min(input_image)) return input_image
Example #12
Source File: image.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def resize(im, short, max_size): """ only resize input image to target size and return scale :param im: BGR image input by opencv :param short: one dimensional size (the short side) :param max_size: one dimensional max size (the long side) :return: resized image (NDArray) and scale (float) """ im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(short) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) return im, im_scale
Example #13
Source File: test_quantization.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_quantize_float32_to_int8(): shape = rand_shape_nd(4) data = rand_ndarray(shape, 'default', dtype='float32') min_range = mx.nd.min(data) max_range = mx.nd.max(data) qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8') data_np = data.asnumpy() min_range = min_range.asscalar() max_range = max_range.asscalar() real_range = np.maximum(np.abs(min_range), np.abs(max_range)) quantized_range = 127.0 scale = quantized_range / real_range assert qdata.dtype == np.int8 assert min_val.dtype == np.float32 assert max_val.dtype == np.float32 assert same(min_val.asscalar(), -real_range) assert same(max_val.asscalar(), real_range) qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8) assert_almost_equal(qdata.asnumpy(), qdata_np, atol = 1)
Example #14
Source File: gradcam.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def grad_to_image(gradient): """Convert gradients of image obtained using `get_image_grad` into image. This shows parts of the image that is most strongly activating the output neurons.""" gradient = gradient - gradient.min() gradient /= gradient.max() gradient = np.uint8(gradient * 255).transpose(1, 2, 0) gradient = gradient[..., ::-1] return gradient
Example #15
Source File: gradcam.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def get_cam(imggrad, conv_out): """Compute CAM. Refer section 3 of https://arxiv.org/abs/1610.02391 for details""" weights = np.mean(imggrad, axis=(1, 2)) cam = np.ones(conv_out.shape[1:], dtype=np.float32) for i, w in enumerate(weights): cam += w * conv_out[i, :, :] cam = cv2.resize(cam, (imggrad.shape[1], imggrad.shape[2])) cam = np.maximum(cam, 0) cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam)) cam = np.uint8(cam * 255) return cam
Example #16
Source File: gradcam.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def to_grayscale(cv2im): """Convert gradients to grayscale. This gives a saliency map.""" # How strongly does each position activate the output grayscale_im = np.sum(np.abs(cv2im), axis=0) # Normalize between min and 99th percentile im_max = np.percentile(grayscale_im, 99) im_min = np.min(grayscale_im) grayscale_im = np.clip((grayscale_im - im_min) / (im_max - im_min), 0, 1) grayscale_im = np.expand_dims(grayscale_im, axis=0) return grayscale_im
Example #17
Source File: DihedralAngleConstraints.py From fullrmc with GNU Affero General Public License v3.0 | 5 votes |
def compute_standard_error(self, data): """ Compute the standard error (StdErr) of data not satisfying constraint conditions. .. math:: StdErr = \\sum \\limits_{i}^{C} ( \\theta_{i} - \\theta_{i}^{min} ) ^{2} \\int_{0}^{\\theta_{i}^{min}} \\delta(\\theta-\\theta_{i}) d \\theta + ( \\theta_{i} - \\theta_{i}^{max} ) ^{2} \\int_{\\theta_{i}^{max}}^{\\pi} \\delta(\\theta-\\theta_{i}) d \\theta Where:\n :math:`C` is the total number of defined improper angles constraints. \n :math:`\\theta_{i}^{min}` is the improper angle constraint lower limit set for constraint i. \n :math:`\\theta_{i}^{max}` is the improper angle constraint upper limit set for constraint i. \n :math:`\\theta_{i}` is the improper angle computed for constraint i. \n :math:`\\delta` is the Dirac delta function. \n :math:`\\int_{0}^{\\theta_{i}^{min}} \\delta(\\theta-\\theta_{i}) d \\theta` is equal to 1 if :math:`0 \\leqslant \\theta_{i} \\leqslant \\theta_{i}^{min}` and 0 elsewhere.\n :math:`\\int_{\\theta_{i}^{max}}^{\\pi} \\delta(\\theta-\\theta_{i}) d \\theta` is equal to 1 if :math:`\\theta_{i}^{max} \\leqslant \\theta_{i} \\leqslant \\pi` and 0 elsewhere.\n :Parameters: #. data (numpy.array): The constraint value data to compute standardError. :Returns: #. standardError (number): The calculated standardError of the constraint. """ return FLOAT_TYPE( np.sum(data["reducedAngles"]**2) )
Example #18
Source File: profiler_ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_reduce(): sample_num = 200 def test_reduce_inner(numpy_reduce_func, nd_reduce_func): for i in range(sample_num): ndim = np.random.randint(1, 6) shape = np.random.randint(1, 11, size=ndim) axis_flags = np.random.randint(0, 2, size=ndim) axes = [] for (axis, flag) in enumerate(axis_flags): if flag: axes.append(axis) keepdims = np.random.randint(0, 2) dat = np.random.rand(*shape) - 0.5 if 0 == len(axes): axes = tuple(range(ndim)) else: axes = tuple(axes) numpy_ret = numpy_reduce_func(dat, axis=axes, keepdims=keepdims) ndarray_ret = nd_reduce_func(mx.nd.array(dat), axis=axes, keepdims=keepdims) if type(ndarray_ret) is mx.ndarray.NDArray: ndarray_ret = ndarray_ret.asnumpy() assert (ndarray_ret.shape == numpy_ret.shape) or \ (ndarray_ret.shape == (1,) and numpy_ret.shape == ()), "nd:%s, numpy:%s" \ %(ndarray_ret.shape, numpy_ret.shape) err = np.square(ndarray_ret - numpy_ret).mean() assert err < 1E-4 test_reduce_inner(lambda data, axis, keepdims:_np_reduce(data, axis, keepdims, np.sum), mx.nd.sum) test_reduce_inner(lambda data, axis, keepdims:_np_reduce(data, axis, keepdims, np.max), mx.nd.max) test_reduce_inner(lambda data, axis, keepdims:_np_reduce(data, axis, keepdims, np.min), mx.nd.min)
Example #19
Source File: gtf_utils.py From models with MIT License | 5 votes |
def gene_ends_update(self): for t in self.trans: self.start = min(self.start, np.min(t.exons)) self.stop = max(self.stop, np.max(t.exons))
Example #20
Source File: dcgan.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def visual(title, X, name): assert len(X.shape) == 4 X = X.transpose((0, 2, 3, 1)) X = np.clip((X - np.min(X))*(255.0/(np.max(X) - np.min(X))), 0, 255).astype(np.uint8) n = np.ceil(np.sqrt(X.shape[0])) buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) for i, img in enumerate(X): fill_buf(buff, i, img, X.shape[1:3]) buff = buff[:,:,::-1] plt.imshow(buff) plt.title(title) plt.savefig(name)
Example #21
Source File: Constraint.py From fullrmc with GNU Affero General Public License v3.0 | 5 votes |
def fit_scale_factor(self, experimentalData, modelData, dataWeights): """ The best scale factor value is computed by minimizing :math:`E=sM`.\n Where: #. :math:`E` is the experimental data. #. :math:`s` is the scale factor. #. :math:`M` is the model constraint data. This method doesn't allow specifying frames. It will target used frame only. :Parameters: #. experimentalData (numpy.ndarray): Experimental data. #. modelData (numpy.ndarray): Constraint modal data. #. dataWeights (None, numpy.ndarray): Data points weights to compute the scale factor. If None is given, all data points will be considered as having the same weight. :Returns: #. scaleFactor (number): The new scale factor fit value. **NB**: This method won't update the internal scale factor value of the constraint. It always computes the best scale factor given experimental and atomic model data. """ if dataWeights is None: SF = FLOAT_TYPE( np.sum(modelData*experimentalData)/np.sum(modelData**2) ) else: SF = FLOAT_TYPE( np.sum(dataWeights*modelData*experimentalData)/np.sum(modelData**2) ) SF = max(SF, self.__adjustScaleFactorMinimum) SF = min(SF, self.__adjustScaleFactorMaximum) return SF
Example #22
Source File: test_quantization.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_get_optimal_thresholds(): # Given an ndarray with elements following a uniform distribution, the optimal threshold # for quantizing the ndarray should be either abs(min(nd)) or abs(max(nd)). def get_threshold(nd): min_nd = mx.nd.min(nd) max_nd = mx.nd.max(nd) return mx.nd.maximum(mx.nd.abs(min_nd), mx.nd.abs(max_nd)).asnumpy() nd_dict = {'layer1': mx.nd.uniform(low=-10.532, high=11.3432, shape=(8, 3, 23, 23), dtype=np.float64)} expected_threshold = get_threshold(nd_dict['layer1']) th_dict = mx.contrib.quant._get_optimal_thresholds(nd_dict) assert 'layer1' in th_dict assert_almost_equal(np.array([th_dict['layer1'][1]]), expected_threshold, rtol=1e-2, atol=1e-4)
Example #23
Source File: ptBEV.py From PolarSeg with BSD 3-Clause "New" or "Revised" License | 5 votes |
def nb_greedy_FPS(xyz,K): start_element = 0 sample_num = xyz.shape[0] sum_vec = np.zeros((sample_num,1),dtype = np.float32) xyz_sq = xyz**2 for j in range(sample_num): sum_vec[j,0] = np.sum(xyz_sq[j,:]) pairwise_distance = sum_vec + np.transpose(sum_vec) - 2*np.dot(xyz, np.transpose(xyz)) candidates_ind = np.zeros((sample_num,),dtype = np.bool_) candidates_ind[start_element] = True remain_ind = np.ones((sample_num,),dtype = np.bool_) remain_ind[start_element] = False all_ind = np.arange(sample_num) for i in range(1,K): if i == 1: min_remain_pt_dis = pairwise_distance[:,start_element] min_remain_pt_dis = min_remain_pt_dis[remain_ind] else: cur_dis = pairwise_distance[remain_ind,:] cur_dis = cur_dis[:,candidates_ind] min_remain_pt_dis = np.zeros((cur_dis.shape[0],),dtype = np.float32) for j in range(cur_dis.shape[0]): min_remain_pt_dis[j] = np.min(cur_dis[j,:]) next_ind_in_remain = np.argmax(min_remain_pt_dis) next_ind = all_ind[remain_ind][next_ind_in_remain] candidates_ind[next_ind] = True remain_ind[next_ind] = False return candidates_ind
Example #24
Source File: __init__.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def test_mesh(self): ''' test_mesh() ensures that many general mesh properties and methods are working. ''' import neuropythy.geometry as geo logging.info('neuropythy: Testing meshes and properties...') # get a random subject's mesh sub = ny.data['benson_winawer_2018'].subjects['S1204'] hem = sub.hemis[('lh','rh')[np.random.randint(2)]] msh = hem.white_surface # few simple things self.assertEqual(msh.coordinates.shape[0], 3) self.assertEqual(msh.tess.faces.shape[0], 3) self.assertEqual(msh.tess.edges.shape[0], 2) self.assertEqual(msh.vertex_count, msh.coordinates.shape[1]) # face areas and edge lengths should all be non-negative self.assertGreaterEqual(np.min(msh.face_areas), 0) self.assertGreaterEqual(np.min(msh.edge_lengths), 0) # test the properties self.assertTrue('blerg' in msh.with_prop(blerg=msh.prop('curvature')).properties) self.assertFalse('curvature' in msh.wout_prop('curvature').properties) self.assertEqual(msh.properties.row_count, msh.vertex_count) self.assertLessEqual(np.abs(np.mean(msh.prop('curvature'))), 0.1) # use the property interface to grab a fancy masked property v123_areas = msh.property('midgray_surface_area', mask=('inf-prf_visual_area', (1,2,3)), null=0) v123_area = np.sum(v123_areas) self.assertLessEqual(v123_area, 15000) self.assertGreaterEqual(v123_area, 500) (v1_ecc, v1_rad) = msh.property(['prf_eccentricity','prf_radius'], mask=('inf-prf_visual_area', 1), weights='prf_variance_explained', weight_min=0.1, clipped=0, null=np.nan) wh = np.isfinite(v1_ecc) & np.isfinite(v1_rad) self.assertGreater(np.corrcoef(v1_ecc[wh], v1_rad[wh])[0,0], 0.5)
Example #25
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def close_curves(*crvs, **kw): ''' close_curves(crv1, crv2...) yields a single curve that merges all of the given list of curves together. The curves must be given in order, such that the i'th curve should be connected to to the (i+1)'th curve circularly to form a perimeter. The following optional parameters may be given: * grid may specify the number of grid-points to use in the initial search for a start-point (default: 16). * order may specify the order of the resulting curve; by default (None) uses the lowest order of all curves. * smoothing (None) the amount to smooth the points. * even_out (True) whether to even out the distances along the curve. * meta_data (None) an optional map of meta-data to give the spline representation. ''' for k in six.iterkeys(kw): if k not in close_curves.default_options: raise ValueError('Unrecognized option: %s' % k) kw = {k:(kw[k] if k in kw else v) for (k,v) in six.iteritems(close_curves.default_options)} (grid, order) = (kw['grid'], kw['order']) crvs = [(crv if is_curve_spline(crv) else to_curve_spline(crv)).even_out() for crv in crvs] # find all intersections: isects = [curve_intersection(u,v, grid=grid) for (u,v) in zip(crvs, np.roll(crvs,-1))] # subsample curves crds = np.hstack([crv.subcurve(s1[1], s0[0]).coordinates[:,:-1] for (crv,s0,s1) in zip(crvs, isects, np.roll(isects,1,0))]) kw['order'] = np.min([crv.order for crv in crvs]) if order is None else order kw = {k:v for (k,v) in six.iteritems(kw) if v is not None and k in ('order','smoothing','even_out','meta_data')} return curve_spline(crds, periodic=True, **kw)
Example #26
Source File: labels.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def colormap(entries): ''' lblidx.colormap is a colormap appropriate for use with data that has been scaled to run from 0 at lblidx.vmin to 1 at lblidx.vmax. ''' import matplotlib.colors from_list = matplotlib.colors.LinearSegmentedColormap.from_list ids = np.asarray([e.id for e in entries]) ii = np.argsort(ids) ids = ids[ii] clrs = np.asarray([e.color for e in entries])[ii] (vmin,vmax) = [f(ids) for f in (np.min, np.max)] vals = (ids - vmin) / (vmax - vmin) return from_list('label%d' % len(vals), list(zip(vals, clrs)))
Example #27
Source File: labels.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def vmin(ids): ''' lblidx.vmin is the minimum value of a label identifier in the given label index. ''' return np.min(ids)
Example #28
Source File: data_provider_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_preprocessed_image_values_are_in_range(self): image_shape = (5, 4, 3) fake_image = np.random.randint(low=0, high=255, size=image_shape) image_tf = data_provider.preprocess_image(fake_image) with self.test_session() as sess: image_np = sess.run(image_tf) self.assertEqual(image_np.shape, image_shape) min_value, max_value = np.min(image_np), np.max(image_np) self.assertTrue((-1.28 < min_value) and (min_value < 1.27)) self.assertTrue((-1.28 < max_value) and (max_value < 1.27))
Example #29
Source File: monitoring.py From neural-pipeline with MIT License | 5 votes |
def update_losses(self, losses: {}) -> None: def on_loss(name: str, values: np.ndarray, string) -> None: string.append(" {}: [{:4f}, {:4f}, {:4f}];".format(name, np.min(values), np.mean(values), np.max(values))) res_string = self.ResStr("Epoch: [{}];".format(self.epoch_num)) self._iterate_by_losses(losses, lambda m, v: on_loss(m, v, res_string)) print(res_string)
Example #30
Source File: plotting.py From cat-bbs with MIT License | 5 votes |
def _line_to_xy(self, line_x, line_y, limit_y_min=None, limit_y_max=None): point_every = max(1, int(len(line_x) / self.nb_points_max)) points_x = [] points_y = [] curr_sum = 0 counter = 0 last_idx = len(line_x) - 1 for i in range(len(line_x)): batch_idx = line_x[i] if batch_idx > self.start_batch_idx: curr_sum += line_y[i] counter += 1 if counter >= point_every or i == last_idx: points_x.append(batch_idx) y = curr_sum / counter if limit_y_min is not None and limit_y_max is not None: y = np.clip(y, limit_y_min, limit_y_max) elif limit_y_min is not None: y = max(y, limit_y_min) elif limit_y_max is not None: y = min(y, limit_y_max) points_y.append(y) counter = 0 curr_sum = 0 return points_x, points_y