Python numpy.random.shuffle() Examples
The following are 30
code examples of numpy.random.shuffle().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: loader.py From Detectron.pytorch with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #2
Source File: srez_main.py From srez with MIT License | 6 votes |
def prepare_dirs(delete_train_dir=False): # Create checkpoint dir (do not delete anything) if not tf.gfile.Exists(FLAGS.checkpoint_dir): tf.gfile.MakeDirs(FLAGS.checkpoint_dir) # Cleanup train dir if delete_train_dir: if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) # Return names of training files if not tf.gfile.Exists(FLAGS.dataset) or \ not tf.gfile.IsDirectory(FLAGS.dataset): raise FileNotFoundError("Could not find folder `%s'" % (FLAGS.dataset,)) filenames = tf.gfile.ListDirectory(FLAGS.dataset) filenames = sorted(filenames) random.shuffle(filenames) filenames = [os.path.join(FLAGS.dataset, f) for f in filenames] return filenames
Example #3
Source File: loader.py From DIoU-pytorch-detectron with GNU General Public License v3.0 | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #4
Source File: loader.py From Detectron.pytorch with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #5
Source File: loader.py From detectron-self-train with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #6
Source File: loader.py From FPN-Pytorch with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #7
Source File: loader.py From Large-Scale-VRD.pytorch with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #8
Source File: loader_rel.py From Large-Scale-VRD.pytorch with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #9
Source File: loader.py From PMFNet with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #10
Source File: base.py From cesi with Apache License 2.0 | 6 votes |
def optim(self, xys): # Performs actual optimization idx = np.arange(len(xys)) # Index for every triple in dataset self.batch_size = int(np.ceil(len(xys) / self.nbatches)) # Calculte batch size (n_obsv / n_batches) batch_idx = np.arange(self.batch_size, len(xys), self.batch_size) # np.arange(start, stop, step) -> To get split positions (10,50,10) = [10,20,30,40] for self.epoch in range(1, self.max_epochs + 1): # Running for maximum number of epochs # shuffle training examples self.pre_epoch() # Set loss = 0 shuffle(idx) # Shuffle the indexes of triples # store epoch for callback self.epoch_start = timeit.default_timer() # Measuring time # process mini-batches for batch in np.split(idx, batch_idx): # Get small subset of triples from training data bxys = [xys[z] for z in batch] # Get triples present in the selected batch self.process_batch(bxys) # Perform SGD using them # check callback function, if false return for f in self.post_epoch: # Perform post epoch operation is specified if not f(self): break
Example #11
Source File: loader.py From PANet with MIT License | 6 votes |
def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist()))
Example #12
Source File: base.py From scikit-kge with MIT License | 6 votes |
def _optim(self, xys): idx = np.arange(len(xys)) self.batch_size = np.ceil(len(xys) / self.nbatches) batch_idx = np.arange(self.batch_size, len(xys), self.batch_size) for self.epoch in range(1, self.max_epochs + 1): # shuffle training examples self._pre_epoch() shuffle(idx) # store epoch for callback self.epoch_start = timeit.default_timer() # process mini-batches for batch in np.split(idx, batch_idx): # select indices for current batch bxys = [xys[z] for z in batch] self._process_batch(bxys) # check callback function, if false return for f in self.post_epoch: if not f(self): break
Example #13
Source File: loader.py From Context-aware-ZSR with MIT License | 6 votes |
def _reset_iter(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) self._ratio_index = self.ratio_index[indices] self._ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] self._ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list self._ratio_list_minibatch = cal_minibatch_ratio(ratio_list) self.iter_counter = 0 self._ratio_index = self._ratio_index.tolist() self._ratio_list_minibatch = self._ratio_list_minibatch.tolist()
Example #14
Source File: util.py From MicroTokenizer with MIT License | 5 votes |
def itershuffle(iterable, bufsize=1000): """Shuffle an iterator. This works by holding `bufsize` items back and yielding them sometime later. Obviously, this is not unbiased – but should be good enough for batching. Larger bufsize means less bias. From https://gist.github.com/andres-erbsen/1307752 iterable (iterable): Iterator to shuffle. bufsize (int): Items to hold back. YIELDS (iterable): The shuffled iterator. """ iterable = iter(iterable) buf = [] try: while True: for i in range(random.randint(1, bufsize-len(buf))): buf.append(iterable.next()) random.shuffle(buf) for i in range(random.randint(1, bufsize)): if buf: yield buf.pop() else: break except StopIteration: random.shuffle(buf) while buf: yield buf.pop() raise StopIteration
Example #15
Source File: test_regression.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_shuffle_of_array_of_objects(self): # Test that permuting an array of objects will not cause # a segfault on garbage collection. # See gh-7719 np.random.seed(1234) a = np.array([np.arange(1), np.arange(4)]) for _ in range(1000): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #16
Source File: test_regression.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_shuffle_of_array_of_different_length_strings(self): # Test that permuting an array of different length strings # will not cause a segfault on garbage collection # Tests gh-7710 np.random.seed(1234) a = np.array(['a', 'a' * 1000]) for _ in range(100): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #17
Source File: test_regression.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_shuffle_of_array_of_objects(self): # Test that permuting an array of objects will not cause # a segfault on garbage collection. # See gh-7719 np.random.seed(1234) a = np.array([np.arange(1), np.arange(4)]) for _ in range(1000): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #18
Source File: test_regression.py From keras-lambda with MIT License | 5 votes |
def test_shuffle_mixed_dimension(self): # Test for trac ticket #2074 for t in [[1, 2, 3, None], [(1, 1), (2, 2), (3, 3), None], [1, (2, 2), (3, 3), None], [(1, 1), 2, 3, None]]: np.random.seed(12345) shuffled = list(t) random.shuffle(shuffled) assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
Example #19
Source File: MMTransE.py From MTransE with Apache License 2.0 | 5 votes |
def train_intersect_1epoch(self, shuffle=True, const_decay=1.0, sampling=False, L1=False): num_lan = len(self.languages) sum = 0.0 count = 0 index = None if shuffle == True: RD.shuffle(self.intersect_index) index = self.intersect_index else: index = range(len(self.intersect_index)) for x in index: line = self.intersect_triples[x] count += 1 if count % 50000 == 0: print "Scanned ",count," on intersect graph" transfer_index = '' for i in range(num_lan): for j in range(num_lan): if i == j: continue l_left = self.languages[i] l_right = self.languages[j] transfer_index = l_left + l_right this_transfer = self.transfer[transfer_index] sum += self.gradient_decent(this_transfer, self.models[l_left].vec_e[line[i][0]], self.models[l_right].vec_e[line[j][0]], const_decay, L1) sum += self.gradient_decent(this_transfer, self.models[l_left].vec_e[line[i][2]], self.models[l_right].vec_e[line[j][2]], const_decay, L1) sum += self.gradient_decent(this_transfer, self.models[l_left].vec_r[line[i][1]], self.models[l_right].vec_r[line[j][1]], const_decay, L1) return sum
Example #20
Source File: sampling.py From dstc8-reddit-corpus with MIT License | 5 votes |
def __call__(self, dlgs, group_configs): if not group_configs: return dlgs def make_indices(max_n, limit=-1, shuffle=False): inds = list(range(max_n)) if shuffle: random.shuffle(inds) if limit > 0: inds = inds[:limit] return inds cfg = group_configs.pop(0) grouped_dlgs_dict = OrderedDict() for dlg in dlgs: if len(dlg) <= cfg.group_level: continue group_key = dlg[cfg.group_level][TURN_ID] if group_key not in grouped_dlgs_dict: grouped_dlgs_dict[group_key] = [] grouped_dlgs_dict[group_key].append(dlg) all_groups = list(grouped_dlgs_dict.keys()) inds = make_indices(len(all_groups), cfg.n_groups, cfg.shuffle_groups) groups = [all_groups[i] for i in inds] final_dlgs = [] for g in groups: sub_grouped_dlgs = self.__call__( grouped_dlgs_dict[g], group_configs[:]) inds = make_indices(len(sub_grouped_dlgs), cfg.n_per_group, cfg.shuffle_within_groups) final_sub_grouped_dlgs = [sub_grouped_dlgs[i] for i in inds] final_dlgs.extend(final_sub_grouped_dlgs) return final_dlgs
Example #21
Source File: MMTransE.py From MTransE with Apache License 2.0 | 5 votes |
def __init__(self, dim = 100, save_dir = 'model_MtransE.bin'): self.dim = dim self.languages = [] self.rate = 0.01 #learning rate self.trained_epochs = 0 self.save_dir = save_dir #single-language models of each language self.models = {} self.triples = {} # cross-lingual linear transfer self.transfer = {} #intersect graph self.intersect_triples = np.array([0]) #shuffle index for intersect triples self.intersect_index = np.array([0])
Example #22
Source File: test_regression.py From ImageFusion with MIT License | 5 votes |
def test_shuffle_mixed_dimension(self): # Test for trac ticket #2074 for t in [[1, 2, 3, None], [(1, 1), (2, 2), (3, 3), None], [1, (2, 2), (3, 3), None], [(1, 1), 2, 3, None]]: np.random.seed(12345) shuffled = list(t) random.shuffle(shuffled) assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
Example #23
Source File: base.py From scikit-kge with MIT License | 5 votes |
def _pre_epoch(self): self.nviolations = 0 if self.samplef is None: shuffle(self.pxs) shuffle(self.nxs)
Example #24
Source File: shufflingbatchiterator.py From theanolm with Apache License 2.0 | 5 votes |
def _reset(self, shuffle=True): """Resets the read pointer back to the beginning of the data set. If ``shuffle`` is set to True, also creates a new random order for iterating the input lines. :type shuffle: bool :param shuffle: also shuffles the input sentences, unless set to False """ self._next_line = 0 if shuffle: logging.debug("Generating a random order of input lines.") samples = [] for (start, stop), sample_size in \ zip(self._sentence_pointers.pointer_ranges, self._sample_sizes): population = numpy.arange(start, stop, dtype='int64') # No duplicates, unless we need more sentences than there are # in the file. replace = sample_size > len(population) sample = random.choice(population, sample_size, replace=replace) samples.append(sample) self._order = numpy.concatenate(samples) for _ in range(10): random.shuffle(self._order)
Example #25
Source File: test_regression.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_shuffle_of_array_of_objects(self): # Test that permuting an array of objects will not cause # a segfault on garbage collection. # See gh-7719 np.random.seed(1234) a = np.array([np.arange(1), np.arange(4)]) for _ in range(1000): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #26
Source File: test_regression.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_shuffle_of_array_of_different_length_strings(self): # Test that permuting an array of different length strings # will not cause a segfault on garbage collection # Tests gh-7710 np.random.seed(1234) a = np.array(['a', 'a' * 1000]) for _ in range(100): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #27
Source File: test_regression.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_shuffle_mixed_dimension(self): # Test for trac ticket #2074 for t in [[1, 2, 3, None], [(1, 1), (2, 2), (3, 3), None], [1, (2, 2), (3, 3), None], [(1, 1), 2, 3, None]]: np.random.seed(12345) shuffled = list(t) random.shuffle(shuffled) assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
Example #28
Source File: test_regression.py From keras-lambda with MIT License | 5 votes |
def test_shuffle_of_array_of_different_length_strings(self): # Test that permuting an array of different length strings # will not cause a segfault on garbage collection # Tests gh-7710 np.random.seed(1234) a = np.array(['a', 'a' * 1000]) for _ in range(100): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #29
Source File: test_regression.py From keras-lambda with MIT License | 5 votes |
def test_shuffle_of_array_of_objects(self): # Test that permuting an array of objects will not cause # a segfault on garbage collection. # See gh-7719 np.random.seed(1234) a = np.array([np.arange(1), np.arange(4)]) for _ in range(1000): np.random.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
Example #30
Source File: base.py From cesi with Apache License 2.0 | 5 votes |
def pre_epoch(self): self.nviolations = 0 if self.samplef is None: shuffle(self.pxs) shuffle(self.nxs)