Python numpy.ma.getmaskarray() Examples
The following are 30
code examples of numpy.ma.getmaskarray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.ma
, or try the search function
.
Example #1
Source File: corex.py From discrete_sieve with Apache License 2.0 | 6 votes |
def calculate_marginals_on_samples(self, theta, Xm, return_ratio=True): """Calculate the value of the marginal distribution for each variable, for each hidden variable and each sample. theta: array parametrizing the marginals Xm: the data returns log p(y_j|x_i)/p(y_j) for each j,sample,i,y_j. [n_hidden, n_samples, n_visible, dim_hidden] """ n_samples = Xm.shape[0] log_marg_x = np.zeros((self.n_hidden, n_samples, self.n_visible, self.dim_hidden)) for i in range(self.n_visible): not_missing = np.logical_not(ma.getmaskarray(Xm)[:, i]) log_marg_x[:, not_missing, i, :] = self.marginal_p(Xm[not_missing,i], theta[i, :, :, :]) if return_ratio: # Again, I use the same p(y) here for each x_i, but for missing variables, p(y) on obs. sample may be different. log_p_xi = logsumexp(log_marg_x + self.log_p_y.reshape((self.n_hidden, 1, 1, self.dim_hidden)), axis=3) log_marg_x -= log_p_xi[:, :, :, np.newaxis] return log_marg_x
Example #2
Source File: colors.py From Computable with MIT License | 6 votes |
def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax + 1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx >= b] = i if self._interp: scalefac = float(self.Ncmap - 1) / (self.N - 2) iret = (iret * scalefac).astype(np.int16) iret[xx < self.vmin] = -1 iret[xx >= self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret
Example #3
Source File: colors.py From matplotlib-4-abaqus with MIT License | 6 votes |
def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax + 1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx >= b] = i if self._interp: scalefac = float(self.Ncmap - 1) / (self.N - 2) iret = (iret * scalefac).astype(np.int16) iret[xx < self.vmin] = -1 iret[xx >= self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret
Example #4
Source File: colors.py From neural-network-animation with MIT License | 6 votes |
def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax + 1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx >= b] = i if self._interp: scalefac = float(self.Ncmap - 1) / (self.N - 2) iret = (iret * scalefac).astype(np.int16) iret[xx < self.vmin] = -1 iret[xx >= self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret
Example #5
Source File: mrecords.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array Uses `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data. # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the existing field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #6
Source File: mrecords.py From lambda-packs with MIT License | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #7
Source File: mrecords.py From Computable with MIT License | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array, using `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data ............ # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the exisintg field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask ............. # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #8
Source File: frame.py From Computable with MIT License | 5 votes |
def _masked_rec_array_to_mgr(data, index, columns, dtype, copy): """ extract from a masked rec array and create the manager """ # essentially process a record array then fill it fill_value = data.fill_value fdata = ma.getdata(data) if index is None: index = _get_names_from_index(fdata) if index is None: index = _default_index(len(data)) index = _ensure_index(index) if columns is not None: columns = _ensure_index(columns) arrays, arr_columns = _to_arrays(fdata, columns) # fill if needed new_arrays = [] for fv, arr, col in zip(fill_value, arrays, arr_columns): mask = ma.getmaskarray(data[col]) if mask.any(): arr, fv = _maybe_upcast(arr, fill_value=fv, copy=True) arr[mask] = fv new_arrays.append(arr) # create the manager arrays, arr_columns = _reorder_arrays(new_arrays, arr_columns, columns) if columns is None: columns = arr_columns mgr = _arrays_to_mgr(arrays, arr_columns, index, columns) if copy: mgr = mgr.copy() return mgr
Example #9
Source File: mrecords.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #10
Source File: mrecords.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #11
Source File: mrecords.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array Uses `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data. # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the existing field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #12
Source File: mrecords.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #13
Source File: mrecords.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #14
Source File: mrecords.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array Uses `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data. # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the existing field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #15
Source File: mrecords.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #16
Source File: mrecords.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #17
Source File: mrecords.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #18
Source File: construction.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def masked_rec_array_to_mgr(data, index, columns, dtype, copy): """ Extract from a masked rec array and create the manager. """ # essentially process a record array then fill it fill_value = data.fill_value fdata = ma.getdata(data) if index is None: index = get_names_from_index(fdata) if index is None: index = ibase.default_index(len(data)) index = ensure_index(index) if columns is not None: columns = ensure_index(columns) arrays, arr_columns = to_arrays(fdata, columns) # fill if needed new_arrays = [] for fv, arr, col in zip(fill_value, arrays, arr_columns): mask = ma.getmaskarray(data[col]) if mask.any(): arr, fv = maybe_upcast(arr, fill_value=fv, copy=True) arr[mask] = fv new_arrays.append(arr) # create the manager arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns) if columns is None: columns = arr_columns mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype) if copy: mgr = mgr.copy() return mgr # --------------------------------------------------------------------- # DataFrame Constructor Interface
Example #19
Source File: mrecords.py From Fluid-Designer with GNU General Public License v3.0 | 5 votes |
def __setitem__(self, indx, value): "Sets the given record to value." MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #20
Source File: mrecords.py From Fluid-Designer with GNU General Public License v3.0 | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array, using `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data ............ # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the exisintg field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask ............. # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #21
Source File: mrecords.py From pySINDy with MIT License | 5 votes |
def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #22
Source File: mrecords.py From pySINDy with MIT License | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #23
Source File: mrecords.py From pySINDy with MIT License | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array Uses `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data. # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the existing field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #24
Source File: mrecords.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #25
Source File: mrecords.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example #26
Source File: mrecords.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array Uses `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data. # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the existing field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #27
Source File: mrecords.py From ImageFusion with MIT License | 5 votes |
def __setitem__(self, indx, value): "Sets the given record to value." MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)
Example #28
Source File: mrecords.py From ImageFusion with MIT License | 5 votes |
def addfield(mrecord, newfield, newfieldname=None): """Adds a new field to the masked record array, using `newfield` as data and `newfieldname` as name. If `newfieldname` is None, the new field name is set to 'fi', where `i` is the number of existing fields. """ _data = mrecord._data _mask = mrecord._mask if newfieldname is None or newfieldname in reserved_fields: newfieldname = 'f%i' % len(_data.dtype) newfield = ma.array(newfield) # Get the new data ............ # Create a new empty recarray newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) newdata = recarray(_data.shape, newdtype) # Add the exisintg field [newdata.setfield(_data.getfield(*f), *f) for f in _data.dtype.fields.values()] # Add the new field newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) newdata = newdata.view(MaskedRecords) # Get the new mask ............. # Create a new empty recarray newmdtype = np.dtype([(n, bool_) for n in newdtype.names]) newmask = recarray(_data.shape, newmdtype) # Add the old masks [newmask.setfield(_mask.getfield(*f), *f) for f in _mask.dtype.fields.values()] # Add the mask of the new field newmask.setfield(getmaskarray(newfield), *newmask.dtype.fields[newfieldname]) newdata._mask = newmask return newdata
Example #29
Source File: corex.py From discrete_sieve with Apache License 2.0 | 5 votes |
def calculate_theta(self, Xm, p_y_given_x): """Estimate marginal parameters from data and expected latent labels.""" theta = [] for i in range(self.n_visible): not_missing = np.logical_not(ma.getmaskarray(Xm)[:, i]) theta.append(self.estimate_parameters(Xm.data[not_missing, i], p_y_given_x[:, not_missing])) return np.array(theta)
Example #30
Source File: mrecords.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def __setitem__(self, indx, value): """ Sets the given record to value. """ MaskedArray.__setitem__(self, indx, value) if isinstance(indx, basestring): self._mask[indx] = ma.getmaskarray(value)