Python numpy.frompyfunc() Examples
The following are 30
code examples of numpy.frompyfunc().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: misc.py From xrayutilities with GNU General Public License v2.0 | 6 votes |
def gcd(lst): """ greatest common divisor function using library functions Parameters ---------- lst: array-like array of integer values for which the greatest common divisor should be determined Returns ------- gcd: int """ if numpy.version.version >= '1.15.0': return numpy.gcd.reduce(lst) elif sys.version_info >= (3, 5): gcdfunc = numpy.frompyfunc(math.gcd, 2, 1) else: gcdfunc = numpy.frompyfunc(fractions.gcd, 2, 1) return numpy.ufunc.reduce(gcdfunc, lst)
Example #2
Source File: elemwise.py From attention-lvcsr with MIT License | 6 votes |
def set_ufunc(self, scalar_op): # This is probably a speed up of the implementation if isinstance(scalar_op, theano.scalar.basic.Add): self.ufunc = numpy.add elif isinstance(scalar_op, theano.scalar.basic.Mul): self.ufunc = numpy.multiply elif isinstance(scalar_op, theano.scalar.basic.Maximum): self.ufunc = numpy.maximum elif isinstance(scalar_op, theano.scalar.basic.Minimum): self.ufunc = numpy.minimum elif isinstance(scalar_op, theano.scalar.basic.AND): self.ufunc = numpy.bitwise_and elif isinstance(scalar_op, theano.scalar.basic.OR): self.ufunc = numpy.bitwise_or elif isinstance(scalar_op, theano.scalar.basic.XOR): self.ufunc = numpy.bitwise_xor else: self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
Example #3
Source File: elemwise.py From D-VAE with MIT License | 6 votes |
def set_ufunc(self, scalar_op): # This is probably a speed up of the implementation if isinstance(scalar_op, theano.scalar.basic.Add): self.ufunc = numpy.add elif isinstance(scalar_op, theano.scalar.basic.Mul): self.ufunc = numpy.multiply elif isinstance(scalar_op, theano.scalar.basic.Maximum): self.ufunc = numpy.maximum elif isinstance(scalar_op, theano.scalar.basic.Minimum): self.ufunc = numpy.minimum elif isinstance(scalar_op, theano.scalar.basic.AND): self.ufunc = numpy.bitwise_and elif isinstance(scalar_op, theano.scalar.basic.OR): self.ufunc = numpy.bitwise_or elif isinstance(scalar_op, theano.scalar.basic.XOR): self.ufunc = numpy.bitwise_xor else: self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
Example #4
Source File: test_regression.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
Example #5
Source File: test_regression.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_frompyfunc_endian(self, level=rlevel): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #6
Source File: test_regression.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
Example #7
Source File: test_regression.py From keras-lambda with MIT License | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #8
Source File: test_regression.py From keras-lambda with MIT License | 5 votes |
def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
Example #9
Source File: test_regression.py From keras-lambda with MIT License | 5 votes |
def test_frompyfunc_endian(self, level=rlevel): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #10
Source File: test_regression.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #11
Source File: test_regression.py From ImageFusion with MIT License | 5 votes |
def test_frompyfunc_endian(self, level=rlevel): """Ticket #503""" from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #12
Source File: test_regression.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_frompyfunc_endian(self): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #13
Source File: test_regression.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #14
Source File: pytables.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _maybe_convert(values, val_kind, encoding): if _need_convert(val_kind): conv = _get_converter(val_kind, encoding) # conv = np.frompyfunc(conv, 1, 1) values = conv(values) return values
Example #15
Source File: test_regression.py From coffeegrindsize with MIT License | 5 votes |
def test_frompyfunc_endian(self): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #16
Source File: test_regression.py From coffeegrindsize with MIT License | 5 votes |
def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
Example #17
Source File: test_regression.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #18
Source File: pytables.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _maybe_convert(values, val_kind, encoding): if _need_convert(val_kind): conv = _get_converter(val_kind, encoding) # conv = np.frompyfunc(conv, 1, 1) values = conv(values) return values
Example #19
Source File: test_regression.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #20
Source File: prim_array_reduce.py From myia with MIT License | 5 votes |
def pyimpl_array_reduce(fn, array, shp): """Implement `array_reduce`.""" idtype = array.dtype ufn = np.frompyfunc(fn, 2, 1) delta = len(array.shape) - len(shp) if delta < 0: raise ValueError("Shape to reduce to cannot be larger than original") def is_reduction(ishp, tshp): if tshp == 1 and ishp > 1: return True elif tshp != ishp: raise ValueError("Dimension mismatch for reduce") else: return False reduction = [ (delta + idx if is_reduction(ishp, tshp) else None, True) for idx, (ishp, tshp) in enumerate(zip(array.shape[delta:], shp)) ] reduction = [(i, False) for i in range(delta)] + reduction for idx, keep in reversed(reduction): if idx is not None: array = ufn.reduce(array, axis=idx, keepdims=keep) if not isinstance(array, np.ndarray): # Force result to be ndarray, even if it's 0d array = np.array(array) array = array.astype(idtype) return array
Example #21
Source File: test_regression.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #22
Source File: test_regression.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
Example #23
Source File: test_regression.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_frompyfunc_endian(self, level=rlevel): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #24
Source File: iterative_imputer.py From ME-Net with MIT License | 5 votes |
def _object_dtype_isnan(X): return np.frompyfunc(lambda x: x != x, 1, 1)(X).astype(bool) # TODO: once sklearn is updated to 0.20, we can take this out
Example #25
Source File: fixes.py From pyglmnet with MIT License | 5 votes |
def _object_dtype_isnan(X): return np.frompyfunc(lambda x: x != x, 1, 1)(X).astype(bool)
Example #26
Source File: utilities.py From CatKit with GNU General Public License v3.0 | 5 votes |
def list_gcd(values): """Return the greatest common divisor of a list of values.""" if isinstance(values[0], float): values = np.array(values, dtype=int) gcd_func = np.frompyfunc(gcd, 2, 1) _gcd = np.ufunc.reduce(gcd_func, values) return _gcd
Example #27
Source File: test_regression.py From pySINDy with MIT License | 5 votes |
def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]]) assert_equal(uf(a), ()) assert_array_equal(a, [[3, 2, 1], [5, 4], [9, 7, 8, 6]])
Example #28
Source File: test_regression.py From pySINDy with MIT License | 5 votes |
def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
Example #29
Source File: test_regression.py From pySINDy with MIT License | 5 votes |
def test_frompyfunc_endian(self): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float))
Example #30
Source File: pytables.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _maybe_convert(values, val_kind, encoding, errors): if _need_convert(val_kind): conv = _get_converter(val_kind, encoding, errors) # conv = np.frompyfunc(conv, 1, 1) values = conv(values) return values