Python numpy.bitwise_and() Examples
The following are 30
code examples of numpy.bitwise_and().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: fourier.py From ibllib with MIT License | 6 votes |
def _freq_vector(f, b, typ='lp'): """ Returns a frequency modulated vector for filtering :param f: frequency vector, uniform and monotonic :param b: 2 bounds array :return: amplitude modulated frequency vector """ filc = ((f <= b[0]).astype(float) + np.bitwise_and(f > b[0], f < b[1]).astype(float) * (0.5 * (1 + np.sin(np.pi * (f - ((b[0] + b[1]) / 2)) / (b[0] - b[1]))))) if typ == 'hp': return 1 - filc elif typ == 'lp': return filc
Example #2
Source File: test_umath.py From vnpy_crypto with MIT License | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #3
Source File: elemwise.py From D-VAE with MIT License | 6 votes |
def set_ufunc(self, scalar_op): # This is probably a speed up of the implementation if isinstance(scalar_op, theano.scalar.basic.Add): self.ufunc = numpy.add elif isinstance(scalar_op, theano.scalar.basic.Mul): self.ufunc = numpy.multiply elif isinstance(scalar_op, theano.scalar.basic.Maximum): self.ufunc = numpy.maximum elif isinstance(scalar_op, theano.scalar.basic.Minimum): self.ufunc = numpy.minimum elif isinstance(scalar_op, theano.scalar.basic.AND): self.ufunc = numpy.bitwise_and elif isinstance(scalar_op, theano.scalar.basic.OR): self.ufunc = numpy.bitwise_or elif isinstance(scalar_op, theano.scalar.basic.XOR): self.ufunc = numpy.bitwise_xor else: self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
Example #4
Source File: test_umath.py From pySINDy with MIT License | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #5
Source File: test_ufunc.py From pySINDy with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #6
Source File: test_ufunc.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #7
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #8
Source File: test_ufunc.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #9
Source File: test_ufunc.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #10
Source File: test_ufunc.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #11
Source File: test_umath.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #12
Source File: elemwise.py From attention-lvcsr with MIT License | 6 votes |
def set_ufunc(self, scalar_op): # This is probably a speed up of the implementation if isinstance(scalar_op, theano.scalar.basic.Add): self.ufunc = numpy.add elif isinstance(scalar_op, theano.scalar.basic.Mul): self.ufunc = numpy.multiply elif isinstance(scalar_op, theano.scalar.basic.Maximum): self.ufunc = numpy.maximum elif isinstance(scalar_op, theano.scalar.basic.Minimum): self.ufunc = numpy.minimum elif isinstance(scalar_op, theano.scalar.basic.AND): self.ufunc = numpy.bitwise_and elif isinstance(scalar_op, theano.scalar.basic.OR): self.ufunc = numpy.bitwise_or elif isinstance(scalar_op, theano.scalar.basic.XOR): self.ufunc = numpy.bitwise_xor else: self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
Example #13
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #14
Source File: test_ufunc.py From vnpy_crypto with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #15
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #16
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example #17
Source File: test_ufunc.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #18
Source File: dqn_agent_nips.py From DQN-chainer with MIT License | 6 votes |
def agent_start(self, observation): # Get intensity from current observation array tmp = np.bitwise_and(np.asarray(observation.intArray[128:]).reshape([210, 160]), 0b0001111) # Get Intensity from the observation obs_array = (spm.imresize(tmp, (110, 84)))[110-84-8:110-8, :] # Scaling # Initialize State self.state = np.zeros((4, 84, 84), dtype=np.uint8) self.state[0] = obs_array state_ = cuda.to_gpu(np.asanyarray(self.state.reshape(1, 4, 84, 84), dtype=np.float32)) # Generate an Action e-greedy returnAction = Action() action, Q_now = self.DQN.e_greedy(state_, self.epsilon) returnAction.intArray = [action] # Update for next step self.lastAction = copy.deepcopy(returnAction) self.last_state = self.state.copy() self.last_observation = obs_array return returnAction
Example #19
Source File: dqn_agent_nature.py From DQN-chainer with MIT License | 6 votes |
def agent_start(self, observation): # Preprocess tmp = np.bitwise_and(np.asarray(observation.intArray[128:]).reshape([210, 160]), 0b0001111) # Get Intensity from the observation obs_array = (spm.imresize(tmp, (110, 84)))[110-84-8:110-8, :] # Scaling # Initialize State self.state = np.zeros((4, 84, 84), dtype=np.uint8) self.state[0] = obs_array state_ = cuda.to_gpu(np.asanyarray(self.state.reshape(1, 4, 84, 84), dtype=np.float32)) # Generate an Action e-greedy returnAction = Action() action, Q_now = self.DQN.e_greedy(state_, self.epsilon) returnAction.intArray = [action] # Update for next step self.lastAction = copy.deepcopy(returnAction) self.last_state = self.state.copy() self.last_observation = obs_array return returnAction
Example #20
Source File: local_extrema.py From aitom with GNU General Public License v3.0 | 5 votes |
def local_maxima(arr): # http://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/3689710#3689710 """ Takes an array and detects the troughs using the local maximum filter. Returns a boolean mask of the troughs (i.e. 1 when the pixel's value is the neighborhood maximum, 0 otherwise) """ # define an connected neighborhood # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#generate_binary_structure neighborhood = morphology.generate_binary_structure(len(arr.shape),2) # apply the local maximum filter; all locations of maximal value # in their neighborhood are set to 1 # http://www.scipy.org/doc/api_docs/SciPy.ndimage.filters.html#maximum_filter local_max = (filters.maximum_filter(arr, footprint=neighborhood)==arr) # local_max is a mask that contains the peaks we are # looking for, but also the background. # In order to isolate the peaks we must remove the background from the mask. # # we create the mask of the background background = (arr==arr.min()) # mxu: in the original version, was background = (arr==0) # # a little technicality: we must erode the background in order to # successfully subtract it from local_max, otherwise a line will # appear along the background border (artifact of the local maximum filter) # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#binary_erosion eroded_background = morphology.binary_erosion( background, structure=neighborhood, border_value=1) # # we obtain the final mask, containing only peaks, # by removing the background from the local_max mask #detected_maxima = local_max - eroded_backround # mxu: this is the old version, but the boolean minus operator is deprecated detected_maxima = np.bitwise_and(local_max, np.bitwise_not(eroded_background)) # Material nonimplication, see http://en.wikipedia.org/wiki/Material_nonimplication return np.where(detected_maxima)
Example #21
Source File: graph.py From PyGraphArt with MIT License | 5 votes |
def delta_plus(self, nodes): ''' Returns the list of edges forwarding from a set of nodes ''' bool_indices_head = np.array([x[0] in nodes for x in self.edges]) bool_indices_tail = np.array([x[1] not in nodes for x in self.edges]) bool_indices_edges = np.bitwise_and( bool_indices_head, bool_indices_tail) return self.edges[bool_indices_edges]
Example #22
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_identity(self): assert_(np.bitwise_or.identity == 0, 'bitwise_or') assert_(np.bitwise_xor.identity == 0, 'bitwise_xor') assert_(np.bitwise_and.identity == -1, 'bitwise_and')
Example #23
Source File: graph.py From PyGraphArt with MIT License | 5 votes |
def delta_minus(self, nodes): ''' Returns the list of edges backwarding from a set of nodes ''' bool_indices_head = np.array([x[0] not in nodes for x in self.edges]) bool_indices_tail = np.array([x[1] in nodes for x in self.edges]) bool_indices_edges = np.bitwise_and( bool_indices_head, bool_indices_tail) return self.edges[bool_indices_edges]
Example #24
Source File: packer.py From blueoil with Apache License 2.0 | 5 votes |
def run(self, tensor: np.ndarray, data_format: str = 'NHWC') -> np.ndarray: """Pack a tensor. Args: tensor (np.ndarray): Input tensor. data_format (str): Order of dimension. This defaults to 'NHWC', where 'N' is the number of kernels, 'H' and 'W' are the height and width, and 'C' is the depth / the number of channels. Returns: np.ndarray: Quantized tensor. """ wordsize = self.wordsize if (tensor >= (2 ** self.bitwidth)).any(): raise ValueError("all value of input tensor must be less than bit width ({})".format(self.bitwidth)) output_size = tensor.size // wordsize output_size += 1 if tensor.size % wordsize != 0 else 0 output_size *= self.bitwidth tensor_flat = tensor.flatten(order='C').astype(np.uint32) output = np.zeros(output_size, dtype=np.uint32) oi = 0 for i in range(0, tensor.size, wordsize): if i + wordsize < tensor.size: sliced_tensor = tensor_flat[i:i + wordsize] else: sliced_tensor = tensor_flat[i:] for _ in range(0, self.bitwidth): output[oi] = self._pack_to_word(np.bitwise_and(sliced_tensor, 1)) oi += 1 sliced_tensor = np.right_shift(sliced_tensor, 1) return output.reshape([1, output_size])
Example #25
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_types(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_(np.bitwise_not(zeros).dtype == dt, msg) assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg) assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg) assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
Example #26
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_truth_table_bitwise(self): arg1 = [False, False, True, True] arg2 = [False, True, False, True] out = [False, True, True, True] assert_equal(np.bitwise_or(arg1, arg2), out) out = [False, False, False, True] assert_equal(np.bitwise_and(arg1, arg2), out) out = [False, True, True, False] assert_equal(np.bitwise_xor(arg1, arg2), out)
Example #27
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_identity(self): assert_(np.bitwise_or.identity == 0, 'bitwise_or') assert_(np.bitwise_xor.identity == 0, 'bitwise_xor') assert_(np.bitwise_and.identity == -1, 'bitwise_and')
Example #28
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_types(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_(np.bitwise_not(zeros).dtype == dt, msg) assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg) assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg) assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
Example #29
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_truth_table_bitwise(self): arg1 = [False, False, True, True] arg2 = [False, True, False, True] out = [False, True, True, True] assert_equal(np.bitwise_or(arg1, arg2), out) out = [False, False, False, True] assert_equal(np.bitwise_and(arg1, arg2), out) out = [False, True, True, False] assert_equal(np.bitwise_xor(arg1, arg2), out)
Example #30
Source File: manta_reader.py From FRETBursts with GNU General Public License v2.0 | 5 votes |
def get_timestamps_detectors(data, nbits=24): """From raw uint32 words extracts timestamps and detector fields. Returns two arrays: timestamps (uint32) and detectors (uint8). Note that to save RAM, the timestamps memory is the same as data that is modified by zeroing the detectors bit. """ # Extract the detector allocating only a new uint8 array dt = np.dtype([('det', 'u1'), ('time', '3u1')]) det = np.frombuffer(data, dtype=dt)['det'].copy() det += 1 # Timestamps are in the lower `nbit` bits, use the same memory as `data` # and zeros the high bits containing the detectors data.setflags(write=True) timestamps = np.bitwise_and(data, 2**nbits - 1, out=data) return timestamps, det