Python IPython.embed() Examples
The following are 30
code examples of IPython.embed().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
IPython
, or try the search function
.
Example #1
Source File: main.py From ctfscoreboard with Apache License 2.0 | 7 votes |
def main(argv): if 'createdb' in argv: models.db.create_all() elif 'createdata' in argv: from scoreboard.tests import data models.db.create_all() data.create_all() elif 'shell' in argv: try: import IPython run_shell = IPython.embed except ImportError: import readline # noqa: F401 import code run_shell = code.InteractiveConsole().interact run_shell() else: wsgi.app.run( host='0.0.0.0', debug=True, port=wsgi.app.config.get('PORT', 9999))
Example #2
Source File: train.py From PolarMask with Apache License 2.0 | 7 votes |
def test(): from tqdm import trange import cv2 print('debug mode '*10 ) args = parse_args() cfg = Config.fromfile(args.config) cfg.gpus = 1 dataset = build_dataset(cfg.data.train) embed(header='123123') # def visual(i): # img = dataset[i]['img'].data # img = img.permute(1,2,0) + 100 # img = img.data.cpu().numpy() # cv2.imwrite('./trash/resize_v1.jpg',img) # embed(header='check data resizer')
Example #3
Source File: __main__.py From uiautomator2 with MIT License | 7 votes |
def cmd_console(args): import code import platform d = u2.connect(args.serial) model = d.shell("getprop ro.product.model").output.strip() serial = d.serial try: import IPython from traitlets.config import get_config c = get_config() c.InteractiveShellEmbed.colors = "neutral" IPython.embed(config=c, header="IPython -- d.info is ready") except ImportError: _vars = globals().copy() _vars.update(locals()) shell = code.InteractiveConsole(_vars) shell.interact(banner="Python: %s\nDevice: %s(%s)" % (platform.python_version(), model, serial))
Example #4
Source File: decompose.py From channel-pruning with MIT License | 6 votes |
def YYT(Y, n_components=None, DEBUG=False): """ Param: Y: n x d n_components: use 'mle' to guess Returns: P: d x d' QT: d' x d """ newdata = Y.copy() model = PCA(n_components=n_components) if len(newdata.shape) != 2: newdata = newdata.reshape((newdata.shape[0], -1)) #TODO center data model.fit(newdata) if DEBUG: from IPython import embed; embed() return model.components_.T, model.components_ #def GSVD(Z, Y): # NotImplementedError # return [U,V,X,C,S]
Example #5
Source File: shell.py From singularity-cli with Mozilla Public License 2.0 | 6 votes |
def prepare_client(image): """prepare a client to embed in a shell with recipe parsers and writers. """ # The client will announce itself (backend/database) unless it's get from spython.main import get_client from spython.main.parse import parsers from spython.main.parse import writers client = get_client() if image: client.load(image) # Add recipe parsers client.parsers = parsers client.writers = writers return client
Example #6
Source File: shell.py From google-analytics with ISC License | 6 votes |
def shell(scope): if isinstance(scope, ga.account.Profile): profile = scope account = profile.account metrics = profile.core.metrics dimensions = profile.core.dimensions core = profile.core.query realtime = profile.realtime.query print('* global variables: profile, account, metrics, dimensions') print('* build queries with the `core` and `realtime` variables') print(" e.g. `core.metrics('pageviews').daily('yesterday').values`\n") else: print('* global variables: scope') print(' (provide webproperty and/or profile for additional shortcuts)\n') embed(local=locals())
Example #7
Source File: worker.py From fedavgpy with MIT License | 6 votes |
def local_test(self, test_dataloader): self.model.eval() test_loss = test_acc = test_total = 0. with torch.no_grad(): for x, y in test_dataloader: # print("test") # from IPython import embed # embed() if self.gpu: x, y = x.cuda(), y.cuda() pred = self.model(x) loss = criterion(pred, y) _, predicted = torch.max(pred, 1) correct = predicted.eq(y).sum() test_acc += correct.item() test_loss += loss.item() * y.size(0) test_total += y.size(0) return test_acc, test_loss
Example #8
Source File: models.py From PointNetGPD with MIT License | 6 votes |
def sample(self, vis = False, stop = False): """ Samples probabilities of success from the given values """ #samples = np.random.beta(self.posterior_alphas_, self.posterior_betas_) samples = scipy.stats.beta.rvs(self.posterior_alphas_, self.posterior_betas_) if stop: IPython.embed() if vis: print('Samples') print(samples) print('Estimated mean') print((BetaBernoulliModel.beta_mean(self.posterior_alphas_, self.posterior_betas_))) print('At best index') print((BetaBernoulliModel.beta_mean(self.posterior_alphas_[21], self.posterior_betas_[21]))) return samples
Example #9
Source File: repl.py From IOTA_demo with MIT License | 6 votes |
def _start_repl(api): # type: (Iota) -> None """ Starts the REPL. """ _banner = ( 'IOTA API client for {uri} ({testnet}) initialized as variable `api`.\n' 'Type `help(api)` for list of API commands.'.format( testnet = 'testnet' if api.testnet else 'mainnet', uri = api.adapter.get_uri(), ) ) try: # noinspection PyUnresolvedReferences import IPython except ImportError: # IPython not available; use regular Python REPL. from code import InteractiveConsole InteractiveConsole(locals={'api': api}).interact(_banner) else: # Launch IPython REPL. IPython.embed(header=_banner)
Example #10
Source File: utils_for_nasbench.py From eval-nas with MIT License | 6 votes |
def parse_arch_to_model_spec_matrix_op(cell, B=5): matrix = np.zeros((B + 2, B + 2)) ops = [INPUT, ] is_output = [True, ] * (B + 1) try: for i in range(B): prev_node1 = cell[2 * i] # O as input. op = ALLOWED_OPS[cell[2 * i + 1]] ops.append(op) is_output[prev_node1] = False curr_node = i + 1 matrix[prev_node1][curr_node] = 1 # process output for input_node, connect_to_output in enumerate(is_output): matrix[input_node][B + 1] = 1 if connect_to_output else 0 matrix = matrix.astype(np.int) ops.append(OUTPUT) except Exception as e: IPython.embed() return matrix, ops
Example #11
Source File: model_search_nasbench.py From eval-nas with MIT License | 6 votes |
def forward(self, x, model_spec=None, steps=None, bn_train=None): aux_logits = None # self._model_spec.update_multi_gpu(self.alpha_topology, self.alpha_ops) out = self.stem(x) ws = [self.weights(i) for i in range(self.num_intermediate_nodes)] for stack in self.stacks.values(): for k, module in stack.items(): # IPython.embed() if 'module' in k: out = module([out, ws]) else: out = module(out) out = F.avg_pool2d(out, out.shape[2:]).view(out.shape[:2]) # TO match the auxiliary head, but right now it is always false for NASBench. return self.dense(out), aux_logits
Example #12
Source File: _concrete_state.py From kepler-cfhp with MIT License | 6 votes |
def install_extra_module(self, s): if self.extra_module_base is not None: try: extra_module_base = self.extra_module_base extra_module_size = self.extra_module_size num_of_pages = extra_module_size / 4096 + 1 print('extra module is at memory location %x of size %x' % (extra_module_base, extra_module_size)) for i in range(num_of_pages): addr = extra_module_base + i * 4096 con = self.statebroker.get_a_page(self.r, addr) if con is not None: print('successfully get a page at:', hex(addr)) self.set_loader_concret_memory_region(s, addr, con, 4096) else: input('failed to get a page') print('Finished installing extra modules') except TypeError as e: print(e) traceback.print_exc() embed() else: print('do not need to print extra module') return
Example #13
Source File: nasbench_weight_sharing_fairnas_policy.py From eval-nas with MIT License | 6 votes |
def random_sampler(self, model, architect, args): # according to Aug 8 meeting. become the new topo sampler total = self.args.num_intermediate_nodes matrices_list = self.search_space.nasbench_sample_matrix_from_list( np.arange(1, total+1), self.search_space.nasbench_topo_sample_probs) for matrix in matrices_list: if matrix is not None: spec = obtain_full_model_spec(total + 2) try: spec = ModelSpec_v2(matrix, spec.ops) except: IPython.embed() self.model_spec = spec self.model_spec_id = None yield change_model_spec(model, spec)
Example #14
Source File: saver.py From pddm with Apache License 2.0 | 6 votes |
def save_model(self): if self.iter_num==-7: print("Error: MUST SPECIFY ITER_NUM FOR SAVER...") import IPython IPython.embed() # save the model under current iteration number # but also update the finalModel.ckpt too save_path1 = self.tf_saver.save( self.sess, self.save_dir + '/models/model_aggIter' + str( self.iter_num) + '.ckpt') save_path2 = self.tf_saver.save( self.sess, self.save_dir + '/models/finalModel.ckpt') print("Model saved at ", save_path1) ############################################################################################ ##### The following 2 saves together represent a single "iteration" ########## (train model) + (collect new rollouts with that model) = a single "iteration" ############################################################################################
Example #15
Source File: nasbench_api_v2.py From eval-nas with MIT License | 6 votes |
def model_hash_rank(self, full_spec=False): """ Return model's hash according to its rank in given search space. Output: if not full_spec: list[hash_1, hash_2 ...] if full_spec: list[hash_1, hash_2 ...], list[model_spec_1, model_spec_2 ...] :param full_spec: if True, return the spec of each model architecture. :return: """ logging.info('return the entire model hash rank. ' 'Within current searching space, the number of total models are \n' f'Total models: {len(self.hash_rank)}. ') # IPython.embed(header='model_hash_rank') if full_spec: model_specs = [] for ind, h in enumerate(self.hash_rank): model_specs.append(self.hash_to_model_spec(h)) return self.hash_rank, model_specs return self.hash_rank # TODO implement, hash_perfs, perfs_rank
Example #16
Source File: encoder.py From eval-nas with MIT License | 6 votes |
def forward(self, x): embedded = self.embedding(x) # size = [72, 20, 96] embedded = self.dropout(embedded) if self.source_length != self.length: assert self.source_length % self.length == 0 ratio = self.source_length // self.length embedded = embedded.view(-1, self.source_length // ratio, ratio * self.emb_size) out, hidden = self.rnn(embedded) out = F.normalize(out, 2, dim=-1) encoder_outputs = out encoder_hidden = hidden out = torch.mean(out, dim=1) out = F.normalize(out, 2, dim=-1) arch_emb = out # [72, 96] out = self.mlp(out) out = self.regressor(out) predict_value = torch.sigmoid(out) # accuracy prediction. # IPython.embed(header='Checking forward of encoder...') return encoder_outputs, encoder_hidden, arch_emb, predict_value
Example #17
Source File: _prologue_gadget.py From kepler-cfhp with MIT License | 6 votes |
def enforce_prologue_to_copy_to_user(self, state): """ this function is actually a callback or bp over unconstrained call instructions :param state: :return: """ if state.regs.rip.symbolic: print('trying to extract signature at prologue indirect call to copy_from_user') print('Call target address :', state.inspect.function_address) # self.dump_reg(state) # dump registers for debug purpose print(colorama.Fore.RED + '[+] extracting runtime data flow signature for pairing with disclosure gadget' + colorama.Style.RESET_ALL) data_signatures = self.extract_prologue_call_site_signature(state) self.current_prologue_signature = data_signatures print(colorama.Fore.RED + '[!] removing bp_enforce_prologue_to_copy_to_user)' + colorama.Style.RESET_ALL) state.inspect.remove_breakpoint('call', self.bp_enforce_prologue_to_copy_to_user) # embed() else: print('rip is not symbolic, we are not removing this enforcement until we finding one') # embed() return
Example #18
Source File: _prologue_gadget.py From kepler-cfhp with MIT License | 6 votes |
def enforce_indirect_jump_to_disclosure_gadget(self, state): """ this function is actually a callback or bp over unconstrained jmp instruction :param state: :return: """ if state.regs.rip.symbolic: print('trying to extract signature at prologue indirect jump to copy_from_user') print(colorama.Fore.RED +'jmp instruction at:', hex(state.history.addr) + colorama.Style.RESET_ALL) # self.dump_reg(state) print(colorama.Fore.RED + '[+] extracting runtime data flow signature for pairing with disclosure gadget' + colorama.Style.RESET_ALL) data_signatures = self.extract_prologue_call_site_signature(state) self.current_prologue_signature = data_signatures print(colorama.Fore.RED + '[!] removing bp_enforce_prologue_to_copy_to_user)' + colorama.Style.RESET_ALL) state.inspect.remove_breakpoint('call', self.bp_enforce_prologue_to_copy_to_user) # embed() else: print('rip is not symbolic, this should never happen') embed() return
Example #19
Source File: operations.py From eval-nas with MIT License | 6 votes |
def forward(self, x, weight): """ :param x: input. :param weight: topology, op weights accordingly :return: """ topo_weight, op_weight = weight # This is the Single-path way. # apply all projection to get real input to this vertex proj_iter = iter(self.current_proj_ops) input_iter = iter(x) out = next(proj_iter)(next(input_iter)) for ind, (proj, inp) in enumerate(zip(proj_iter, input_iter)): out = out + topo_weight[ind] * proj(inp) # no such thing called current op. output = 0.0 try: for ind, op in enumerate(self.ops.values()): output = output + op_weight[ind] * op(out) except RuntimeError as e: IPython.embed() return output
Example #20
Source File: net.py From channel-pruning with MIT License | 6 votes |
def invBN(self, arr, Y_name): if isinstance(arr, int) or len(self.bns) == 0 or len(self.affines) == 0: return arr interstellar = Y_name.split('_')[0] for i in self.bottom_names[interstellar]: if i in self.bns and 'branch2c' in i: bn = i break for i in self.affines: if self.layer_bottom(i) == bn: affine = i break if 1: print('inverted bn', bn, affine, Y_name) mean, std, k, b = self.getBNaff(bn, affine) # (y - mean) / std * k + b #return (arr - b) * std / k + mean return arr * std / k #embed()
Example #21
Source File: embed_ipython.py From attention-lvcsr with MIT License | 6 votes |
def do(self, which_callback, *args): if not self.sig_raised: return self.sig_raised = False env = None if self.use_main_loop_run_caller_env: frame = sys._getframe() while frame: if frame.f_code is self.main_loop.run.func_code: env = frame.f_back.f_locals break frame = frame.f_back IPython.embed(user_ns=env)
Example #22
Source File: _prologue_gadget.py From kepler-cfhp with MIT License | 6 votes |
def enter_prologue_callback(self, state): """ this is a bp on the first instruction of the prologue gadget we add a bp over call instruction to handle future indirect call TODO: BUG here: we did not consider the indirect jump :param state: :return: """ self.reach_current_prologue_entry = True print(colorama.Fore.RED + 'enter prologue gadget' + colorama.Style.RESET_ALL) if not self.is_dfs_search_routine: state.inspect.remove_breakpoint("call", self.first_fork_site_bp) print('[+] removed the call bp at the first fork site..') # self.bp_enforce_prologue_to_copy_to_user = state.inspect.b("call", when=angr.BP_BEFORE , action=self.enforce_prologue_to_copy_to_user) print('[+] enforced a bp on call for disclosure') #import IPython; IPython.embed() return
Example #23
Source File: _prologue_gadget.py From kepler-cfhp with MIT License | 6 votes |
def extract_prologue_call_site_signature(self, state): """ extract the data flow signature e.g., rdx rsi rdi at the indirect call in the prologue function :param state: the state :return: dict of interested register values """ print('[+] extracting prologue call site signatures...') signature = dict() signature['rdx'] = state.regs.rdx signature['rsi'] = state.regs.rsi signature['rdi'] = state.regs.rdi print('rdx', state.regs.rdx) print('rsi', state.regs.rdi) print('rdi', state.regs.rdi) # import IPython; IPython.embed() return signature
Example #24
Source File: controller.py From eval-nas with MIT License | 5 votes |
def forward(self, input_variable, target_variable=None): # IPython.embed(header='study nao_nasbench sampler, chaeck input and output') # Input to encoder is so-called sequence. encoder_outputs, encoder_hidden, arch_emb, predict_value = self.encoder(input_variable) decoder_hidden = (arch_emb.unsqueeze(0), arch_emb.unsqueeze(0)) decoder_outputs, decoder_hidden, ret = self.decoder(target_variable, decoder_hidden, encoder_outputs) # decoder_outputs 41 x [72,12], same as ret['sequence'] decoder_outputs = torch.stack(decoder_outputs, 0).permute(1, 0, 2) # decoder_outputs becomes [] arch = torch.stack(ret['sequence'], 0).permute(1, 0, 2) return predict_value, decoder_outputs, arch
Example #25
Source File: plot_rank_change.py From eval-nas with MIT License | 5 votes |
def _process_rank_data_for_plotting(rank_data, gt_index_by_rank, e_dict): """ :param rank_data: :param gt_index_by_rank: :param e_dict: To create panda data. {} :return: """ epochs = rank_data.keys() # print(e_dict) # IPython.embed() pd_epoch = pd.DataFrame.from_dict(e_dict) pd_epoch.sort_values('geno_id', inplace=True) pd_epoch.reset_index(inplace=True, drop=True) pd_epoch = pd_epoch.reindex(gt_index_by_rank) pd_epoch.reset_index(inplace=True, drop=True) # print(pd_epoch) # rank change rank_df = pd_epoch rc_data = [] # rc = rank change keys_list = list(epochs) step = 2 x_values = [] for i in range(0, len(keys_list), step): k = keys_list[i] a = rank_df.sort_values(['epoch_{}'.format(k)]) x_values.append(int(k)) rc_data.append(a.index.values) # Add the final result. rc_data.append([i for i in range(0, len(rc_data[-1]))]) x_values.append(x_values[-1] + 1 * (x_values[-1] - x_values[-2]) if len(x_values) > 1 else 1) x_values = np.array(x_values) rc_data = np.asanyarray(rc_data) rc_data = np.transpose(rc_data) return rc_data, x_values, rank_df
Example #26
Source File: discrete_selection_policies.py From PointNetGPD with MIT License | 5 votes |
def choose_next(self, stop = False): """ Returns the index of the maximal random sample, breaking ties uniformly at random""" if self.model_ is None: raise ValueError('Must set predictive model') sampled_values = self.model_.sample() if stop: IPython.embed() max_indices = np.where(sampled_values == np.max(sampled_values))[0] num_max_indices = max_indices.shape[0] next_index = np.random.choice(num_max_indices) return max_indices[next_index]
Example #27
Source File: shell.py From pysmt with Apache License 2.0 | 5 votes |
def interactive(self): # Enable infix notation in Interactive mode get_env().enable_infix_notation = True try: import IPython print(welcome_msg) IPython.embed() except ImportError: import code code.interact(welcome_msg)
Example #28
Source File: aurum_cli.py From aurum-datadiscovery with MIT License | 5 votes |
def explore_model(self, model_name): """ Initiates an interactive IPython session to run discovery queries. :param model_name: :return: """ api, reporting = init_system(self._make_model_path(model_name).__str__() + '/', create_reporting=True) IPython.embed()
Example #29
Source File: __init__.py From api with BSD 3-Clause "New" or "Revised" License | 5 votes |
def shell(): """Run a Python shell in the app context.""" try: import IPython except ImportError: IPython = None if IPython is not None: IPython.embed(banner1="", user_ns=current_app.make_shell_context()) else: import code code.interact(banner="", local=current_app.make_shell_context())
Example #30
Source File: saver.py From pddm with Apache License 2.0 | 5 votes |
def save_rollout_info(self, save_data): if self.iter_num==-7: print("Error: MUST SPECIFY ITER_NUM FOR SAVER...") import IPython IPython.embed() #info from all MPC rollouts (from this iteration) pickle.dump( save_data.rollouts_info, open( self.save_dir + '/saved_rollouts/rollouts_info_' + str( self.iter_num) + '.pickle', 'wb'), protocol=pickle.HIGHEST_PROTOCOL) #save rewards and scores (for rollouts from all iterations thus far) np.save(self.save_dir + '/rollouts_rewardsPerIter.npy', save_data.rollouts_rewardsPerIter) np.save(self.save_dir + '/rollouts_scoresPerIter.npy', save_data.rollouts_scoresPerIter) #plot rewards and scores (for rollouts from all iterations thus far) rew = np.array(save_data.rollouts_rewardsPerIter) scores = np.array(save_data.rollouts_scoresPerIter) plot_mean_std(rew[:, 0], rew[:, 1], self.save_dir + '/rewards_perIter') plot_mean_std(scores[:, 0], scores[:, 1], self.save_dir + '/scores_perIter') self.iter_num = -7