Python numpy.__name__() Examples
The following are 30
code examples of numpy.__name__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #2
Source File: train_torch_filter.py From ai-imu-dr with MIT License | 6 votes |
def prepare_filter(args, dataset): iekf = TORCHIEKF() # set dataset parameter iekf.filter_parameters = args.parameter_class() iekf.set_param_attr() if type(iekf.g).__module__ == np.__name__: iekf.g = torch.from_numpy(iekf.g).double() # load model if args.continue_training: iekf.load(args, dataset) iekf.train() # init u_loc and u_std iekf.get_normalize_u(dataset) return iekf
Example #3
Source File: common.py From typhon with MIT License | 6 votes |
def _model_to_dict(model): """Convert a sklearn model object to a dictionary""" dictionary = { "module": type(model).__module__, "class": type(model).__name__, "params": model.get_params(deep=True), "coefs": { attr: copy.deepcopy(getattr(model, attr)) for attr in model.__dir__() if not attr.startswith("__") and attr.endswith("_") } } if "tree_" in dictionary["coefs"]: # Not funny. sklearn.tree objects are not directly # serializable to json. Hence, we must dump them by ourselves. dictionary["coefs"]["tree_"] = RetrievalProduct._tree_to_dict( dictionary["coefs"]["tree_"] ) return RetrievalProduct._encode_numpy(dictionary)
Example #4
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #5
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #6
Source File: network.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #7
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #8
Source File: topology.py From lambda-packs with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. Returns: Model config with Keras version information added. """ from tensorflow.contrib.keras.python.keras import __version__ as keras_version # pylint: disable=g-import-not-at-top config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #9
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #10
Source File: pptx_painter.py From quantipy with MIT License | 6 votes |
def all_same(val_array): ''' Check if all the values in given list the same Parameters ---------- numpy_list: numpy array ''' # check if val_array is a numpy array if type(val_array).__module__ == np.__name__: val = val_array.tolist() if isinstance(val[0], list): #handle list of lists return all(round(x[0]) == round(val[0][0]) for x in val) else: #handle single list return all(round(x) == round(val[0]) for x in val) else: raise Exception('This function only takes a numpy array')
Example #11
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #12
Source File: controller.py From HalloPy with MIT License | 6 votes |
def face_covered_frame(self, input_frame_with_faces): """Function to draw black recs over detected faces. This function remove eny 'noise' and help detector detecting palm. :param input_frame_with_faces (np.ndarray): a frame with faces, that needed to be covered. """ try: # make sure input is np.ndarray assert type(input_frame_with_faces).__module__ == np.__name__ except AssertionError as error: self.logger.exception(error) return # Preparation self._preprocessed_input_frame = input_frame_with_faces.copy() gray = cv2.cvtColor(self._preprocessed_input_frame, cv2.COLOR_BGR2GRAY) faces = self._face_detector.detectMultiScale(gray, 1.3, 5) # Black rectangle over faces to remove skin noises. for (x, y, w, h) in faces: self._preprocessed_input_frame[y - self._face_padding_y:y + h + self._face_padding_y, x - self._face_padding_x:x + w + self._face_padding_x, :] = 0
Example #13
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #14
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #15
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #16
Source File: type_mapping.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def type_to_builtin_type(type): # Infer from numpy type if it is one if type.__module__ == np.__name__: return numpy_type_to_builtin_type(type) # Otherwise, try to infer from a few generic python types if np.issubclass_(type, bool): return types_bool elif np.issubclass_(type, six.integer_types): return types_int32 elif np.issubclass_(type, six.string_types): return types_str elif np.issubclass_(type, float): return types_fp32 else: raise TypeError("Could not determine builtin type for " + str(type))
Example #17
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #18
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #19
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #20
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #21
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #22
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #23
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #24
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #25
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #26
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #27
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape
Example #28
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def count_params(self): """Counts the total number of scalars composing the weights. # Returns An integer count. # Raises RuntimeError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': self.build() else: raise RuntimeError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return count_params(self.weights)
Example #29
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _updated_config(self): """Util hared between different serialization methods. # Returns Model config with Keras version information added. """ from .. import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': K.backend() } return model_config
Example #30
Source File: topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def compute_output_shape(self, input_shape): """Computes the output shape of the layer. Assumes that the layer will be built to match that input shape provided. # Arguments input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. # Returns An input shape tuple. """ if hasattr(self, 'get_output_shape_for'): msg = "Class `{}.{}` defines `get_output_shape_for` but does not override `compute_output_shape`. " + \ "If this is a Keras 1 layer, please implement `compute_output_shape` to support Keras 2." warnings.warn(msg.format(type(self).__module__, type(self).__name__), stacklevel=2) return input_shape