Python cv2.IMWRITE_JPEG_QUALITY Examples
The following are 30
code examples of cv2.IMWRITE_JPEG_QUALITY().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: decode.py From blind-watermark with MIT License | 7 votes |
def decode(ori_path, img_path, res_path, alpha): ori = cv2.imread(ori_path) img = cv2.imread(img_path) ori_f = np.fft.fft2(ori) img_f = np.fft.fft2(img) height, width = ori.shape[0], ori.shape[1] watermark = (ori_f - img_f) / alpha watermark = np.real(watermark) res = np.zeros(watermark.shape) random.seed(height + width) x = range(height / 2) y = range(width) random.shuffle(x) random.shuffle(y) for i in range(height / 2): for j in range(width): res[x[i]][y[j]] = watermark[i][j] cv2.imwrite(res_path, res, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
Example #2
Source File: test_tiny_yolo.py From object-detection with MIT License | 6 votes |
def image_detection(sess, image_path, image_file, colors): # Preprocess your image image, image_data = preprocess_image(image_path + image_file, model_image_size = (416, 416)) # Run the session with the correct tensors and choose the correct placeholders in the feed_dict. # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0}) out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolo_model.input:image_data, K.learning_phase():0}) # Print predictions info print('Found {} boxes for {}'.format(len(out_boxes), image_file)) # Draw bounding boxes on the image file image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors) # Save the predicted bounding box on the image #image.save(os.path.join("out", image_file), quality=90) cv2.imwrite(os.path.join("out", "tiny_yolo_" + image_file), image, [cv2.IMWRITE_JPEG_QUALITY, 90]) return out_scores, out_boxes, out_classes
Example #3
Source File: preprocess.py From jama16-retina-replication with MIT License | 6 votes |
def resize(images_paths, size=299): """ Function for resizing images. :param images_paths: Required. Paths to images. :param size: Optional. Size to which resize to. Defaults to 299. :return: Nothing. """ for image_path in images_paths: image = cv2.imread(image_path) # Resize the image. image = cv2.resize(image, (size, size)) # Save the image. cv2.imwrite(image_path, image, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
Example #4
Source File: inference.py From DMPR-PS with GNU General Public License v3.0 | 6 votes |
def detect_image(detector, device, args): """Demo for detecting images.""" timer = Timer() while True: image_file = input('Enter image file path: ') image = cv.imread(image_file) timer.tic() pred_points = detect_marking_points( detector, image, args.thresh, device) slots = None if pred_points and args.inference_slot: marking_points = list(list(zip(*pred_points))[1]) slots = inference_slots(marking_points) timer.toc() plot_points(image, pred_points) plot_slots(image, pred_points, slots) cv.imshow('demo', image) cv.waitKey(1) if args.save: cv.imwrite('save.jpg', image, [int(cv.IMWRITE_JPEG_QUALITY), 100])
Example #5
Source File: format_dataset.py From MassImageRetrieval with Apache License 2.0 | 6 votes |
def format_OxBuild(): src_image_save_dir = "/Volumes/projects/ImageRetireval/dataset/OxBuild/src/" oxbuild_index_file = src_image_save_dir + "index_file.csv" index_writer = open(oxbuild_index_file, "w") src_image_dir = "/Volumes/projects/ImageRetireval/dataset/OxBuild/not_deal_src/" for image_name in os.listdir(src_image_dir): if image_name.startswith("."): continue class_name = image_name.split("_")[0] image_data = cv2.imread(src_image_dir + image_name) resize_image_data = cv2.resize(image_data, (224, 224), interpolation=cv2.INTER_CUBIC) new_image_save_path = src_image_save_dir + image_name cv2.imwrite(new_image_save_path, resize_image_data, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) index_writer.write("{},{}\n".format(image_name, class_name)) # format_OxBuild()
Example #6
Source File: container.py From visual_dynamics with MIT License | 6 votes |
def add_datum(self, *inds, **datum_dict): other_dict = dict([item for item in datum_dict.items() if not item[0].endswith('image')]) super(ImageDataContainer, self).add_datum(*inds, **other_dict) image_dict = dict([item for item in datum_dict.items() if item[0].endswith('image')]) for image_name, image in image_dict.items(): if image_name in self.datum_shapes_dict and self.datum_shapes_dict[image_name] != image.shape: raise ValueError('unable to add datum %s with shape %s since the shape %s was expected' % (image_name, image.shape, self.datum_shapes_dict[image_name])) self.datum_shapes_dict[image_name] = image.shape image_fname = self._get_image_fname(*(inds + (image_name,))) if image.dtype == np.uint8: if image.ndim == 3 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) else: image = math_utils.pack_image(image) cv2.imwrite(image_fname, image, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
Example #7
Source File: DFLJPG.py From DeepFaceLab with GNU General Public License v3.0 | 6 votes |
def set_xseg_mask(self, mask_a): if mask_a is None: self.dfl_dict['xseg_mask'] = None return mask_a = imagelib.normalize_channels(mask_a, 1) img_data = np.clip( mask_a*255, 0, 255 ).astype(np.uint8) data_max_len = 4096 ret, buf = cv2.imencode('.png', img_data) if not ret or len(buf) > data_max_len: for jpeg_quality in range(100,-1,-1): ret, buf = cv2.imencode( '.jpg', img_data, [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality] ) if ret and len(buf) <= data_max_len: break if not ret: raise Exception("set_xseg_mask: unable to generate image data for set_xseg_mask") self.dfl_dict['xseg_mask'] = buf
Example #8
Source File: test_yolov3.py From object-detection with MIT License | 6 votes |
def image_detection(sess, image_path, image_file, colors): # Preprocess your image image, image_data = preprocess_image(image_path + image_file, model_image_size = (416, 416)) # Run the session with the correct tensors and choose the correct placeholders in the feed_dict. # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0}) out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolov3.input:image_data, K.learning_phase():0}) # Print predictions info print('Found {} boxes for {}'.format(len(out_boxes), image_file)) # Draw bounding boxes on the image file image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors) # Save the predicted bounding box on the image #image.save(os.path.join("out", image_file), quality=90) cv2.imwrite(os.path.join("out", "yolov3_" + image_file), image, [cv2.IMWRITE_JPEG_QUALITY, 90]) return out_scores, out_boxes, out_classes
Example #9
Source File: soja_resize_image.py From soja-box with MIT License | 6 votes |
def resize_image(img_path, mini_size=480, jpeg_quality=80): """ 缩放image :param img_path: image的路径 :param mini_size: 最小边的尺寸 :param jpeg_quality: jpeg图片的质量 """ org_img = cv2.imread(img_path) img_w = org_img.shape[0] img_h = org_img.shape[1] if max(img_w, img_h) > mini_size: if img_w > img_h: img_w = mini_size * img_w // img_h img_h = mini_size else: img_h = mini_size * img_h // img_w img_w = mini_size dist_size = (img_h, img_w) r_image = cv2.resize(org_img, dist_size, interpolation=cv2.INTER_AREA) params = [cv2.IMWRITE_JPEG_QUALITY, jpeg_quality] img_name = img_path + '_New.jpg' cv2.imwrite(img_name, r_image, params=[cv2.IMWRITE_JPEG_QUALITY, params])
Example #10
Source File: encode.py From blind-watermark with MIT License | 6 votes |
def encode(img_path, wm_path, res_path, alpha): img = cv2.imread(img_path) img_f = np.fft.fft2(img) height, width, channel = np.shape(img) watermark = cv2.imread(wm_path) wm_height, wm_width = watermark.shape[0], watermark.shape[1] x, y = range(height / 2), range(width) random.seed(height + width) random.shuffle(x) random.shuffle(y) tmp = np.zeros(img.shape) for i in range(height / 2): for j in range(width): if x[i] < wm_height and y[j] < wm_width: tmp[i][j] = watermark[x[i]][y[j]] tmp[height - 1 - i][width - 1 - j] = tmp[i][j] res_f = img_f + alpha * tmp res = np.fft.ifft2(res_f) res = np.real(res) cv2.imwrite(res_path, res, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
Example #11
Source File: resize_image.py From soja-box with MIT License | 6 votes |
def resize_image(img_path, mini_size=480, jpeg_quality=80): """ 缩放image :param img_path: image的路径 :param mini_size: 最小边的尺寸 :param jpeg_quality: jpeg图片的质量 """ org_img = cv2.imread(img_path) img_w = org_img.shape[0] img_h = org_img.shape[1] if max(img_w, img_h) > mini_size: if img_w > img_h: img_w = mini_size * img_w // img_h img_h = mini_size else: img_h = mini_size * img_h // img_w img_w = mini_size dist_size = (img_h, img_w) r_image = cv2.resize(org_img, dist_size, interpolation=cv2.INTER_AREA) params = [cv2.IMWRITE_JPEG_QUALITY, jpeg_quality] img_name = img_path + '_New.jpg' cv2.imwrite(img_name, r_image, params=[cv2.IMWRITE_JPEG_QUALITY, params])
Example #12
Source File: io.py From ethoscope with GNU General Public License v3.0 | 6 votes |
def flush(self, t, img): """ :param t: the time since start of the experiment, in ms :param img: an array representing an image. :type img: np.ndarray :return: """ tick = int(round((t/1000.0)/self._period)) if tick == self._last_tick: return cv2.imwrite(self._tmp_file, img, [int(cv2.IMWRITE_JPEG_QUALITY), 50]) with open(self._tmp_file, "rb") as f: bstring = f.read() cmd = 'INSERT INTO ' + self._table_name + '(id,t,img) VALUES (%s,%s,%s)' args = (0, int(t), bstring) self._last_tick = tick return cmd, args
Example #13
Source File: noise.py From dataflow with Apache License 2.0 | 6 votes |
def _augment(self, img, q): enc = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, q])[1] return cv2.imdecode(enc, 1).astype(img.dtype)
Example #14
Source File: pickle_provider.py From A-Light-and-Fast-Face-Detector-for-Edge-Devices with MIT License | 5 votes |
def __init__(self, pickle_file_path, encode_quality=90, data_adapter=None): ProviderBaseclass.__init__(self) if data_adapter: # write data self.data_adapter = data_adapter self.data = {} self.counter = 0 self.pickle_file_path = pickle_file_path else: # read data self.data = pickle.load(open(pickle_file_path, 'rb')) # get positive and negative indeices self._positive_index = [] self._negative_index = [] for k, v in self.data.items(): if v[1] == 0: # negative self._negative_index.append(k) else: # positive self._positive_index.append(k) self.compression_mode = '.jpg' self.encode_params = [cv2.IMWRITE_JPEG_QUALITY, encode_quality]
Example #15
Source File: opencv.py From faceswap with GNU General Public License v3.0 | 5 votes |
def get_save_args(self): """ Return the save parameters for the file format """ filetype = self.config["format"] args = list() if filetype == "jpg" and self.config["jpg_quality"] > 0: args = (cv2.IMWRITE_JPEG_QUALITY, # pylint: disable=no-member self.config["jpg_quality"]) if filetype == "png" and self.config["png_compress_level"] > -1: args = (cv2.IMWRITE_PNG_COMPRESSION, # pylint: disable=no-member self.config["png_compress_level"]) logger.debug(args) return args
Example #16
Source File: Util.py From DeepFaceLab with GNU General Public License v3.0 | 5 votes |
def add_landmarks_debug_images(input_path): io.log_info ("Adding landmarks debug images...") for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"): filepath = Path(filepath) img = cv2_imread(str(filepath)) dflimg = DFLIMG.load (filepath) if dflimg is None or not dflimg.has_data(): io.log_err (f"{filepath.name} is not a dfl image file") continue if img is not None: face_landmarks = dflimg.get_landmarks() face_type = FaceType.fromString ( dflimg.get_face_type() ) if face_type == FaceType.MARK_ONLY: rect = dflimg.get_source_rect() LandmarksProcessor.draw_rect_landmarks(img, rect, face_landmarks, FaceType.FULL ) else: LandmarksProcessor.draw_landmarks(img, face_landmarks, transparent_mask=True ) output_file = '{}{}'.format( str(Path(str(input_path)) / filepath.stem), '_debug.jpg') cv2_imwrite(output_file, img, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
Example #17
Source File: trans.py From ocr.pytorch with MIT License | 5 votes |
def tranfun(self, image): img = trans_utils.getcvimage(image) param = [int(cv2.IMWRITE_JPEG_QUALITY), random.randint(self.lower, self.upper)] img_encode = cv2.imencode('.jpeg', img, param) img_decode = cv2.imdecode(img_encode[1], cv2.IMREAD_COLOR) pil_img = trans_utils.cv2pil(img_decode) if len(image.split())==1: pil_img = pil_img.convert('L') return pil_img
Example #18
Source File: prepare_dataset.py From DMPR-PS with GNU General Public License v3.0 | 5 votes |
def write_image_and_label(name, image, centralied_marks, name_list): """Write image and label with given name.""" name_list.append(os.path.basename(name)) print("Processing NO.%d samples: %s..." % (len(name_list), name_list[-1])) image = cv.resize(image, (512, 512)) cv.imwrite(name + '.jpg', image, [int(cv.IMWRITE_JPEG_QUALITY), 100]) with open(name + '.json', 'w') as file: json.dump(generalize_marks(centralied_marks), file)
Example #19
Source File: pickle_provider.py From A-Light-and-Fast-Face-Detector-for-Edge-Devices with MIT License | 5 votes |
def __init__(self, pickle_file_path, encode_quality=90, data_adapter=None): ProviderBaseclass.__init__(self) if data_adapter: # write data self.data_adapter = data_adapter self.data = {} self.counter = 0 self.pickle_file_path = pickle_file_path else: # read data self.data = pickle.load(open(pickle_file_path, 'rb')) # get positive and negative indeices self._positive_index = [] self._negative_index = [] for k, v in self.data.items(): if v[1] == 0: # negative self._negative_index.append(k) else: # positive self._positive_index.append(k) self.compression_mode = '.jpg' self.encode_params = [cv2.IMWRITE_JPEG_QUALITY, encode_quality]
Example #20
Source File: pickle_provider.py From lffd-pytorch with MIT License | 5 votes |
def __init__(self, pickle_file_path, encode_quality=90, data_adapter=None): ProviderBaseclass.__init__(self) if data_adapter: # write data self.data_adapter = data_adapter self.data = {} self.counter = 0 self.pickle_file_path = pickle_file_path else: # read data self.data = pickle.load(open(pickle_file_path, 'rb')) # get positive and negative indeices self._positive_index = [] self._negative_index = [] for k, v in self.data.items(): if v[1] == 0: # negative self._negative_index.append(k) else: # positive self._positive_index.append(k) self.compression_mode = '.jpg' self.encode_params = [cv2.IMWRITE_JPEG_QUALITY, encode_quality]
Example #21
Source File: evaluate.py From face-parsing.PyTorch with MIT License | 5 votes |
def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'): # Colors for all 20 parts part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 0, 85], [255, 0, 170], [0, 255, 0], [85, 255, 0], [170, 255, 0], [0, 255, 85], [0, 255, 170], [0, 0, 255], [85, 0, 255], [170, 0, 255], [0, 85, 255], [0, 170, 255], [255, 255, 0], [255, 255, 85], [255, 255, 170], [255, 0, 255], [255, 85, 255], [255, 170, 255], [0, 255, 255], [85, 255, 255], [170, 255, 255]] im = np.array(im) vis_im = im.copy().astype(np.uint8) vis_parsing_anno = parsing_anno.copy().astype(np.uint8) vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 num_of_class = np.max(vis_parsing_anno) for pi in range(1, num_of_class + 1): index = np.where(vis_parsing_anno == pi) vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi] vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) # print(vis_parsing_anno_color.shape, vis_im.shape) vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) # Save result or not if save_im: cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) # return vis_im
Example #22
Source File: test.py From face-parsing.PyTorch with MIT License | 5 votes |
def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'): # Colors for all 20 parts part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 0, 85], [255, 0, 170], [0, 255, 0], [85, 255, 0], [170, 255, 0], [0, 255, 85], [0, 255, 170], [0, 0, 255], [85, 0, 255], [170, 0, 255], [0, 85, 255], [0, 170, 255], [255, 255, 0], [255, 255, 85], [255, 255, 170], [255, 0, 255], [255, 85, 255], [255, 170, 255], [0, 255, 255], [85, 255, 255], [170, 255, 255]] im = np.array(im) vis_im = im.copy().astype(np.uint8) vis_parsing_anno = parsing_anno.copy().astype(np.uint8) vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 num_of_class = np.max(vis_parsing_anno) for pi in range(1, num_of_class + 1): index = np.where(vis_parsing_anno == pi) vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi] vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) # print(vis_parsing_anno_color.shape, vis_im.shape) vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) # Save result or not if save_im: cv2.imwrite(save_path[:-4] +'.png', vis_parsing_anno) cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) # return vis_im
Example #23
Source File: noise.py From ADL with MIT License | 5 votes |
def _augment(self, img, q): enc = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, q])[1] return cv2.imdecode(enc, 1).astype(img.dtype)
Example #24
Source File: collector.py From costar_plan with Apache License 2.0 | 5 votes |
def _rgbdCb(self, rgb_msg, depth_msg): if rgb_msg is None: rospy.logwarn("_rgbdCb: rgb_msg is None !!!!!!!!!") try: # max out at 10 hz assuming 30hz data source # TODO(ahundt) make mod value configurable if rgb_msg.header.seq % 3 == 0: cv_image = self._bridge.imgmsg_to_cv2(rgb_msg, "rgb8") # decode the data, this will take some time rospy.loginfo('rgb color cv_image shape: ' + str(cv_image.shape) + ' depth sequence number: ' + str(msg.header.seq)) # print('rgb color cv_image shape: ' + str(cv_image.shape)) cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) # encode the jpeg with high quality encode_params = [cv2.IMWRITE_JPEG_QUALITY, 99] rgb_img = cv2.imencode('.jpg', cv_image, encode_params)[1].tobytes() # rgb_img = GetJpeg(np.asarray(cv_image)) cv_depth_image = self._bridge.imgmsg_to_cv2(depth_msg, desired_encoding="passthrough") depth_encoded_as_rgb_numpy = encode_depth_numpy(cv_depth_image) bytevalues = cv2.imencode('.png', depth_encoded_as_rgb_numpy)[1].tobytes() with self.mutex: self.rgb_time = msg.header.stamp self.rgb_img = rgb_img # self.depth_info = depth_camera_info # self.rgb_info = rgb_camera_info self.depth_img_time = msg.header.stamp # self.depth_img = np_image # self.depth_img = img_str self.depth_img = bytevalues #print(self.rgb_img) except CvBridgeError as e: rospy.logwarn(str(e))
Example #25
Source File: noise.py From petridishnn with MIT License | 5 votes |
def _augment(self, img, q): enc = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, q])[1] return cv2.imdecode(enc, 1).astype(img.dtype)
Example #26
Source File: augmentation_utils.py From GIFT with Apache License 2.0 | 5 votes |
def jpeg_compress(img,quality_low=15,quality_high=75): quality=np.random.randint(quality_low,quality_high) encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality] result, encimg = cv2.imencode('.jpg', img, encode_param) img=cv2.imdecode(encimg,1) return img
Example #27
Source File: recordio.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def pack_img(header, img, quality=95, img_fmt='.jpg'): """Pack an image into ``MXImageRecord``. Parameters ---------- header : IRHeader Header of the image record. ``header.label`` can be a number or an array. See more detail in ``IRHeader``. img : numpy.ndarray Image to be packed. quality : int Quality for JPEG encoding in range 1-100, or compression for PNG encoding in range 1-9. img_fmt : str Encoding of the image (.jpg for JPEG, .png for PNG). Returns ------- s : str The packed string. Examples -------- >>> label = 4 # label can also be a 1-D array, for example: label = [1,2,3] >>> id = 2574 >>> header = mx.recordio.IRHeader(0, label, id, 0) >>> img = cv2.imread('test.jpg') >>> packed_s = mx.recordio.pack_img(header, img) """ assert cv2 is not None jpg_formats = ['.JPG', '.JPEG'] png_formats = ['.PNG'] encode_params = None if img_fmt.upper() in jpg_formats: encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality] elif img_fmt.upper() in png_formats: encode_params = [cv2.IMWRITE_PNG_COMPRESSION, quality] ret, buf = cv2.imencode(img_fmt, img, encode_params) assert ret, 'failed to encode image' return pack(header, buf.tostring())
Example #28
Source File: save_image.py From detectron2-pipeline with MIT License | 5 votes |
def map(self, data): image = data[self.src] image_id = data["image_id"] # Prepare output for image based on image_id output = image_id.split(os.path.sep) dirname = output[:-1] if len(dirname) > 0: dirname = os.path.join(*dirname) dirname = os.path.join(self.path, dirname) os.makedirs(dirname, exist_ok=True) else: dirname = self.path filename = f"{output[-1].rsplit('.', 1)[0]}.{self.image_ext}" path = os.path.join(dirname, filename) if self.image_ext == "jpg": cv2.imwrite(path, image, (cv2.IMWRITE_JPEG_QUALITY, self.jpg_quality) if self.jpg_quality else None) elif self.image_ext == "png": cv2.imwrite(path, image, (cv2.IMWRITE_PNG_COMPRESSION, self.png_compression) if self.png_compression else None) else: raise Exception("Unsupported image format") return data
Example #29
Source File: control_thread.py From ethoscope with GNU General Public License v3.0 | 5 votes |
def _update_info(self): if self._monit is None: return t = self._monit.last_time_stamp frame_idx = self._monit.last_frame_idx wall_time = time.time() dt = wall_time - self._last_info_t_stamp df = float(frame_idx - self._last_info_frame_idx) if self._last_info_t_stamp == 0 or dt > 0: f = round(df/dt, 2) else: f="NaN" if t is not None:# and p is not None: self._info["monitor_info"] = { # "last_positions":pos, "last_time_stamp":t, "fps": f } frame = self._drawer.last_drawn_frame if frame is not None: cv2.imwrite(self._info["last_drawn_img"], frame, [int(cv2.IMWRITE_JPEG_QUALITY), 50]) self._last_info_t_stamp = wall_time self._last_info_frame_idx = frame_idx
Example #30
Source File: pickle_provider.py From lffd-pytorch with MIT License | 5 votes |
def __init__(self, pickle_file_path, encode_quality=90, data_adapter=None): ProviderBaseclass.__init__(self) if data_adapter: # write data self.data_adapter = data_adapter self.data = {} self.counter = 0 self.pickle_file_path = pickle_file_path else: # read data self.data = pickle.load(open(pickle_file_path, 'rb')) # get positive and negative indeices self._positive_index = [] self._negative_index = [] for k, v in self.data.items(): if v[1] == 0: # negative self._negative_index.append(k) else: # positive self._positive_index.append(k) self.compression_mode = '.jpg' self.encode_params = [cv2.IMWRITE_JPEG_QUALITY, encode_quality]