Python cv2.CV_8UC3 Examples
The following are 24
code examples of cv2.CV_8UC3().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: omnirobot_simulator_server.py From robotics-rl-srl with MIT License | 6 votes |
def renderEnvLuminosityNoise(self, origin_image, noise_var=0.1, in_RGB=False, out_RGB=False): """ render the different environment luminosity """ # variate luminosity and color origin_image_LAB = cv2.cvtColor( origin_image, cv2.COLOR_RGB2LAB if in_RGB else cv2.COLOR_BGR2LAB, cv2.CV_32F) origin_image_LAB[:, :, 0] = origin_image_LAB[:, :, 0] * (np.random.randn() * noise_var + 1.0) origin_image_LAB[:, :, 1] = origin_image_LAB[:, :, 1] * (np.random.randn() * noise_var + 1.0) origin_image_LAB[:, :, 2] = origin_image_LAB[:, :, 2] * (np.random.randn() * noise_var + 1.0) out_image = cv2.cvtColor( origin_image_LAB, cv2.COLOR_LAB2RGB if out_RGB else cv2.COLOR_LAB2BGR, cv2.CV_8UC3) return out_image
Example #2
Source File: UMatFileVideoStream.py From python-opencv-gpu-video with MIT License | 6 votes |
def __init__(self, path, queueSize=128): # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.stream = cv2.VideoCapture(path) self.stopped = False self.count = 0 # initialize the queue used to store frames read from # the video file self.Q = Queue(maxsize=queueSize) # We need some info from the file first. See more at: # https://docs.opencv.org/4.1.0/d4/d15/group__videoio__flags__base.html#gaeb8dd9c89c10a5c63c139bf7c4f5704d self.width = int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)) self.height = int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT)) # since this version uses UMat to store the images to # we need to initialize them beforehand self.frames = [0] * queueSize for ii in range(queueSize): self.frames[ii] = cv2.UMat(self.height, self.width, cv2.CV_8UC3)
Example #3
Source File: video.py From TecoGAN with Apache License 2.0 | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv.add(self.render.getNextFrame(), noise, dtype=cv.CV_8UC3)
Example #4
Source File: video.py From OpenCV-Snapchat-DogFilter with BSD 3-Clause "New" or "Revised" License | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
Example #5
Source File: video.py From OpenCV-Snapchat-DogFilter with BSD 3-Clause "New" or "Revised" License | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
Example #6
Source File: video.py From OpenCV-Snapchat-DogFilter with BSD 3-Clause "New" or "Revised" License | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) return True, buf
Example #7
Source File: video.py From PyCV-time with MIT License | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) return True, buf
Example #8
Source File: gabor_threads.py From PyCV-time with MIT License | 5 votes |
def process_threaded(img, filters, threadn = 8): accum = np.zeros_like(img) def f(kern): return cv2.filter2D(img, cv2.CV_8UC3, kern) pool = ThreadPool(processes=threadn) for fimg in pool.imap_unordered(f, filters): np.maximum(accum, fimg, accum) return accum
Example #9
Source File: watershed.py From PyCV-time with MIT License | 5 votes |
def watershed(self): m = self.markers.copy() cv2.watershed(self.img, m) overlay = self.colors[np.maximum(m, 0)] vis = cv2.addWeighted(self.img, 0.5, overlay, 0.5, 0.0, dtype=cv2.CV_8UC3) cv2.imshow('watershed', vis)
Example #10
Source File: video.py From PyCV-time with MIT License | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) return True, buf
Example #11
Source File: gabor_threads.py From PyCV-time with MIT License | 5 votes |
def process_threaded(img, filters, threadn = 8): accum = np.zeros_like(img) def f(kern): return cv2.filter2D(img, cv2.CV_8UC3, kern) pool = ThreadPool(processes=threadn) for fimg in pool.imap_unordered(f, filters): np.maximum(accum, fimg, accum) return accum
Example #12
Source File: gabor_threads.py From PyCV-time with MIT License | 5 votes |
def process(img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv2.filter2D(img, cv2.CV_8UC3, kern) np.maximum(accum, fimg, accum) return accum
Example #13
Source File: watershed.py From PyCV-time with MIT License | 5 votes |
def watershed(self): m = self.markers.copy() cv2.watershed(self.img, m) overlay = self.colors[np.maximum(m, 0)] vis = cv2.addWeighted(self.img, 0.5, overlay, 0.5, 0.0, dtype=cv2.CV_8UC3) cv2.imshow('watershed', vis)
Example #14
Source File: video.py From TecoGAN with Apache License 2.0 | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv.add(self.render.getNextFrame(), noise, dtype=cv.CV_8UC3)
Example #15
Source File: watershed.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def watershed(self): m = self.markers.copy() cv2.watershed(self.img, m) overlay = self.colors[np.maximum(m, 0)] vis = cv2.addWeighted(self.img, 0.5, overlay, 0.5, 0.0, dtype=cv2.CV_8UC3) cv2.imshow('watershed', vis)
Example #16
Source File: video.py From TecoGAN with Apache License 2.0 | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv.add(buf, noise, dtype=cv.CV_8UC3) return True, buf
Example #17
Source File: video.py From pi-tracking-telescope with MIT License | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) return True, buf
Example #18
Source File: video.py From MachineLearning with Apache License 2.0 | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3) * 255 * self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
Example #19
Source File: video.py From MachineLearning with Apache License 2.0 | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3) * 255 * self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
Example #20
Source File: video.py From MachineLearning with Apache License 2.0 | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv2.randn(noise, np.zeros(3), np.ones(3) * 255 * self.noise) buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) return True, buf
Example #21
Source File: video.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
Example #22
Source File: video.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) return True, buf
Example #23
Source File: gabor_threads.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def process_threaded(img, filters, threadn = 8): accum = np.zeros_like(img) def f(kern): return cv2.filter2D(img, cv2.CV_8UC3, kern) pool = ThreadPool(processes=threadn) for fimg in pool.imap_unordered(f, filters): np.maximum(accum, fimg, accum) return accum
Example #24
Source File: gabor_threads.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def process(img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv2.filter2D(img, cv2.CV_8UC3, kern) np.maximum(accum, fimg, accum) return accum