Python cv2.KNearest() Examples
The following are 7
code examples of cv2.KNearest().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: newknn.py From ustc-grade-automatic-notification with GNU Affero General Public License v3.0 | 5 votes |
def __init__(self): collect_dir = 'captcha/collect' label = [] train_file = [] for i in os.listdir(collect_dir): for y in os.listdir(collect_dir + '/' + i): #print i label.append(ord(i)) #print y train_file.append(collect_dir + '/' + i + '/' + y) train_data = [cv2.imread(i, 0) for i in train_file] train = np.array(train_data).reshape(-1, 400).astype(np.float32) label = np.array(label).reshape(-1) self.knn = cv2.KNearest() self.knn.train(train, label)
Example #2
Source File: digits.py From PyCV-time with MIT License | 5 votes |
def __init__(self, k = 3): self.k = k self.model = cv2.KNearest()
Example #3
Source File: digits.py From PyCV-time with MIT License | 5 votes |
def train(self, samples, responses): self.model = cv2.KNearest() self.model.train(samples, responses)
Example #4
Source File: letter_recog.py From PyCV-time with MIT License | 5 votes |
def __init__(self): self.model = cv2.KNearest()
Example #5
Source File: digits.py From PyCV-time with MIT License | 5 votes |
def __init__(self, k = 3): self.k = k self.model = cv2.KNearest()
Example #6
Source File: digits.py From PyCV-time with MIT License | 5 votes |
def train(self, samples, responses): self.model = cv2.KNearest() self.model.train(samples, responses)
Example #7
Source File: adam_descriptors.py From optimeyes with MIT License | 4 votes |
def main(): opencv_haystack =cv2.imread('adam.jpg') opencv_needle = cv2.imread('adam_rightnostril.jpg') ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY) hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY) import pdb pdb.set_trace() # build feature detector and descriptor extractor hessian_threshold = 175 detector = cv2.SURF(hessian_threshold) (hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False) (nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False) # extract vectors of size 64 from raw descriptors numpy arrays rowsize = len(hdescriptors) / len(hkeypoints) if rowsize > 1: hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize)) nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize)) print "haystack rows shape", hrows.shape print "needle rows shape", nrows.shape else: print '*****************************************************8888' hrows = numpy.array(hdescriptors, dtype = numpy.float32) nrows = numpy.array(ndescriptors, dtype = numpy.float32) rowsize = len(hrows[0]) # kNN training - learn mapping from hrow to hkeypoints index samples = hrows responses = numpy.arange(len(hkeypoints), dtype = numpy.float32) print "sample length", len(samples), "response length", len(responses) knn = cv2.KNearest() knn.train(samples,responses) # retrieve index and value through enumeration for i, descriptor in enumerate(nrows): descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize)) print i, 'descriptor shape', descriptor.shape, 'sample shape', samples[0].shape retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1) res, dist = int(results[0][0]), dists[0][0] print 'result', res, 'distance', dist if dist < 0.1: # draw matched keypoints in red color color = (0, 0, 255) else: # draw unmatched in blue color color = (255, 0, 0) # draw matched key points on haystack image x,y = hkeypoints[res].pt center = (int(x),int(y)) cv2.circle(opencv_haystack,center,2,color,-1) # draw matched key points on needle image x,y = nkeypoints[i].pt center = (int(x),int(y)) cv2.circle(opencv_needle,center,2,color,-1) cv2.imshow('haystack',opencv_haystack) cv2.imshow('needle',opencv_needle) cv2.waitKey(0) cv2.destroyAllWindows()