Python cv2.IMREAD_GRAYSCALE Examples
The following are 30
code examples of cv2.IMREAD_GRAYSCALE().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: captcha_generator.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 9 votes |
def image(self, captcha_str): """ Generate a greyscale captcha image representing number string Parameters ---------- captcha_str: str string a characters for captcha image Returns ------- numpy.ndarray Generated greyscale image in np.ndarray float type with values normalized to [0, 1] """ img = self.captcha.generate(captcha_str) img = np.fromstring(img.getvalue(), dtype='uint8') img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (self.h, self.w)) img = img.transpose(1, 0) img = np.multiply(img, 1 / 255.0) return img
Example #2
Source File: predict_folds.py From argus-tgs-salt with MIT License | 7 votes |
def pred_test_fold(model_path, fold): predictor = Predictor(model_path) prob_df = pd.read_csv(config.SAMPLE_SUBM_PATH) prob_df.rename(columns={'rle_mask': 'prob'}, inplace=True) fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'test') make_dir(fold_prediction_dir) for i, row in prob_df.iterrows(): image_path = join(config.TEST_DIR, 'images'+IMAGES_NAME, row.id + '.png') image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) segm, prob = predictor(image) row.prob = prob segm_save_path = join(fold_prediction_dir, row.id + '.png') cv2.imwrite(segm_save_path, segm) prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False)
Example #3
Source File: test_matting.py From closed-form-matting with MIT License | 7 votes |
def test_solution_close_to_original_implementation(self): image = cv2.imread('testdata/source.png', cv2.IMREAD_COLOR) / 255.0 scribles = cv2.imread('testdata/scribbles.png', cv2.IMREAD_COLOR) / 255.0 alpha = closed_form_matting.closed_form_matting_with_scribbles(image, scribles) foreground, background = solve_foreground_background(image, alpha) matlab_alpha = cv2.imread('testdata/matlab_alpha.png', cv2.IMREAD_GRAYSCALE) / 255.0 matlab_foreground = cv2.imread('testdata/matlab_foreground.png', cv2.IMREAD_COLOR) / 255.0 matlab_background = cv2.imread('testdata/matlab_background.png', cv2.IMREAD_COLOR) / 255.0 sad_alpha = np.mean(np.abs(alpha - matlab_alpha)) sad_foreground = np.mean(np.abs(foreground - matlab_foreground)) sad_background = np.mean(np.abs(background - matlab_background)) self.assertLess(sad_alpha, 1e-2) self.assertLess(sad_foreground, 1e-2) self.assertLess(sad_background, 1e-2)
Example #4
Source File: utils_image.py From KAIR with MIT License | 7 votes |
def imread_uint(path, n_channels=3): # input: path # output: HxWx3(RGB or GGG), or HxWx1 (G) if n_channels == 1: img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE img = np.expand_dims(img, axis=2) # HxWx1 elif n_channels == 3: img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG else: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB return img # -------------------------------------------- # matlab's imwrite # --------------------------------------------
Example #5
Source File: predict_folds.py From argus-tgs-salt with MIT License | 7 votes |
def pred_val_fold(model_path, fold): predictor = Predictor(model_path) folds_df = pd.read_csv(TRAIN_FOLDS_PATH) fold_df = folds_df[folds_df.fold == fold] fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'val') make_dir(fold_prediction_dir) prob_dict = {'id': [], 'prob': []} for i, row in fold_df.iterrows(): image = cv2.imread(row.image_path, cv2.IMREAD_GRAYSCALE) segm, prob = predictor(image) segm_save_path = join(fold_prediction_dir, row.id + '.png') cv2.imwrite(segm_save_path, segm) prob_dict['id'].append(row.id) prob_dict['prob'].append(prob) prob_df = pd.DataFrame(prob_dict) prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False)
Example #6
Source File: predict_folds.py From argus-tgs-salt with MIT License | 7 votes |
def pred_test_fold(model_path, fold): predictor = Predictor(model_path) prob_df = pd.read_csv(config.SAMPLE_SUBM_PATH) prob_df.rename(columns={'rle_mask': 'prob'}, inplace=True) fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'test') make_dir(fold_prediction_dir) for i, row in prob_df.iterrows(): image_path = join(config.TEST_DIR, 'images'+IMAGES_NAME, row.id + '.png') image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) segm, prob = predictor(image) row.prob = prob segm_save_path = join(fold_prediction_dir, row.id + '.png') cv2.imwrite(segm_save_path, segm) prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False)
Example #7
Source File: predict_folds.py From argus-tgs-salt with MIT License | 7 votes |
def pred_val_fold(model_path, fold): predictor = Predictor(model_path) folds_df = pd.read_csv(TRAIN_FOLDS_PATH) fold_df = folds_df[folds_df.fold == fold] fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'val') make_dir(fold_prediction_dir) prob_dict = {'id': [], 'prob': []} for i, row in fold_df.iterrows(): image = cv2.imread(row.image_path, cv2.IMREAD_GRAYSCALE) segm, prob = predictor(image) segm_save_path = join(fold_prediction_dir, row.id + '.png') cv2.imwrite(segm_save_path, segm) prob_dict['id'].append(row.id) prob_dict['prob'].append(prob) prob_df = pd.DataFrame(prob_dict) prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False)
Example #8
Source File: predict_folds.py From argus-tgs-salt with MIT License | 7 votes |
def pred_test_fold(model_path, fold): predictor = Predictor(model_path) prob_df = pd.read_csv(config.SAMPLE_SUBM_PATH) prob_df.rename(columns={'rle_mask': 'prob'}, inplace=True) fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'test') make_dir(fold_prediction_dir) for i, row in prob_df.iterrows(): image_path = join(config.TEST_DIR, 'images'+IMAGES_NAME, row.id + '.png') image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) segm, prob = predictor(image) row.prob = prob segm_save_path = join(fold_prediction_dir, row.id + '.png') cv2.imwrite(segm_save_path, segm) prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False)
Example #9
Source File: predict_folds.py From argus-tgs-salt with MIT License | 7 votes |
def pred_test_fold(model_path, fold): predictor = Predictor(model_path) prob_df = pd.read_csv(config.SAMPLE_SUBM_PATH) prob_df.rename(columns={'rle_mask': 'prob'}, inplace=True) fold_prediction_dir = join(PREDICTION_DIR, f'fold_{fold}', 'test') make_dir(fold_prediction_dir) for i, row in prob_df.iterrows(): image_path = join(config.TEST_DIR, 'images'+IMAGES_NAME, row.id + '.png') image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) segm, prob = predictor(image) row.prob = prob segm_save_path = join(fold_prediction_dir, row.id + '.png') cv2.imwrite(segm_save_path, segm) prob_df.to_csv(join(fold_prediction_dir, 'probs.csv'), index=False)
Example #10
Source File: dataset.py From argus-tgs-salt with MIT License | 7 votes |
def get_samples(train_folds_path, folds): images_lst = [] target_lst = [] depth_lst = [] train_folds_df = pd.read_csv(train_folds_path) for i, row in train_folds_df.iterrows(): if row.fold not in folds: continue image = cv2.imread(row.image_path, cv2.IMREAD_GRAYSCALE) if image is None: raise FileNotFoundError(f"Image not found {row.image_path}") mask = cv2.imread(row.mask_path, cv2.IMREAD_GRAYSCALE) if mask is None: raise FileNotFoundError(f"Mask not found {row.mask_path}") images_lst.append(image) target_lst.append(mask) depth_lst.append(row.z) return images_lst, target_lst, depth_lst
Example #11
Source File: test.py From DeepDeblur with MIT License | 7 votes |
def main(): input_dim = (None, None, num_of_dim) #DeblurNet = ShortCutNet().DeblurResidualNet(input_dim, 6) DeblurNet = ShortCutNet().DeblurSHCNet(input_dim, 15) DeblurNet.summary() input_blur = Input(shape=(input_dim)) out_deblur = DeblurNet(input_blur) # Model model = Model(inputs = input_blur, outputs = out_deblur) model.summary() model.load_weights(path_weights, by_name=True) # test x = cv2.imread(path_test + name_read, cv2.IMREAD_GRAYSCALE) # Read as gray image x = x.reshape(x.shape[0], x.shape[1], num_of_dim) / 255.0 pred = model.predict(np.expand_dims(x, axis=0)) pred = pred.reshape(x.shape[0] - kernel_crop, x.shape[1] - kernel_crop, num_of_dim) cv2.imwrite(path_test + name_save, pred * 255.0)
Example #12
Source File: DataGen.py From DeepDeblur with MIT License | 7 votes |
def _GenerateBatch(self, tmp, path_sharp, path_blur): '''Generates data of batch_size samples ''' # Initialization x_blur = np.zeros([self.batch_size, self.img_rows, self.img_cols, self.num_of_dim], dtype = np.float64) y_sharp = np.zeros([self.batch_size, self.label_rows, self.label_cols, self.num_of_dim], dtype = np.float64) y_fake = np.zeros([self.batch_size], dtype = int) # Generate data for count_i, name_i in enumerate(tmp): # Read blurry input images x = cv2.imread(path_blur + name_i, cv2.IMREAD_GRAYSCALE) x = x.reshape(self.img_rows, self.img_cols, self.num_of_dim) x_blur[count_i, :] = x/255.0 # Read sharp labels x = cv2.imread(path_sharp + name_i, cv2.IMREAD_GRAYSCALE) x = x.reshape(self.img_rows, self.img_cols, self.num_of_dim) x = x[self.kernel_crop:(self.img_rows - self.kernel_crop), \ self.kernel_crop:(self.img_cols - self.kernel_crop)] y_sharp[count_i, :] = x/255.0 return [x_blur, y_sharp], y_fake
Example #13
Source File: otsu_segmentation.py From leaf-image-segmentation with MIT License | 7 votes |
def segment_with_otsu(image_file, background = 0): """ Segment an image file using otsu thresholding Args: image_file: file path background: grayscale value to be set as background Returns: ret_val: segmented_image: in ndarray form """ image = read_image(image_file, cv2.IMREAD_GRAYSCALE) ret_val, marker = get_marker(image) segmented_image = apply_marker(image, marker, background) return ret_val, segmented_image
Example #14
Source File: SudokuExtractor.py From SolveSudoku with MIT License | 7 votes |
def parse_grid(path): original = cv2.imread(path, cv2.IMREAD_GRAYSCALE) processed = pre_process_image(original) # cv2.namedWindow('processed',cv2.WINDOW_AUTOSIZE) # processed_img = cv2.resize(processed, (500, 500)) # Resize image # cv2.imshow('processed', processed_img) corners = find_corners_of_largest_polygon(processed) cropped = crop_and_warp(original, corners) # cv2.namedWindow('cropped',cv2.WINDOW_AUTOSIZE) # cropped_img = cv2.resize(cropped, (500, 500)) # Resize image # cv2.imshow('cropped', cropped_img) squares = infer_grid(cropped) # print(squares) digits = get_digits(cropped, squares, 28) # print(digits) final_image = show_digits(digits) return final_image
Example #15
Source File: utils.py From Tensorflow-Cookbook with MIT License | 7 votes |
def load_test_image(image_path, img_width, img_height, img_channel): if img_channel == 1 : img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE) else : img = cv2.imread(image_path, flags=cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, dsize=(img_width, img_height)) if img_channel == 1 : img = np.expand_dims(img, axis=0) img = np.expand_dims(img, axis=-1) else : img = np.expand_dims(img, axis=0) img = img/127.5 - 1 return img
Example #16
Source File: image_helper.py From openseg.pytorch with MIT License | 7 votes |
def imfrombytes(content, flag='color'): """Read an image from bytes. Args: content (bytes): Image bytes got from files or other streams. flag (str): Same as :func:`imread`. Returns: ndarray: Loaded image array. """ imread_flags = { 'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED } img_np = np.fromstring(content, np.uint8) flag = imread_flags[flag] if isinstance(flag, str) else flag img = cv2.imdecode(img_np, flag) return img
Example #17
Source File: lip.py From openseg.pytorch with MIT License | 7 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) ori_size = image.shape image = self.resize_image(image, (self.crop_h, self.crop_w)) name = datafiles["name"] image = np.asarray(image, np.float32) if self.network == "resnet101": mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean else: #define other data pre-processing method pass image = image.transpose((2, 0, 1)) return image, label, np.array(ori_size), name
Example #18
Source File: vaegan_mxnet.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def get_data(path, activation): '''Get the dataset ''' data = [] image_names = [] for filename in os.listdir(path): img = cv2.imread(os.path.join(path,filename), cv2.IMREAD_GRAYSCALE) image_names.append(filename) if img is not None: data.append(img) data = np.asarray(data) if activation == 'sigmoid': data = data.astype(np.float32)/(255.0) elif activation == 'tanh': data = data.astype(np.float32)/(255.0/2) - 1.0 data = data.reshape((data.shape[0], 1, data.shape[1], data.shape[2])) np.random.seed(1234) p = np.random.permutation(data.shape[0]) X = data[p] return X, image_names
Example #19
Source File: davis17_online_data.py From MaskTrack with MIT License | 6 votes |
def make_df1_df2(self, idx): """ Make the deformations """ df1 = cv2.imread(os.path.join(self.db_root_dir, self.deformations1[idx]), cv2.IMREAD_GRAYSCALE) df2 = cv2.imread(os.path.join(self.db_root_dir, self.deformations2[idx]), cv2.IMREAD_GRAYSCALE) if self.inputRes is not None: df1 = imresize(df1, self.inputRes, interp='nearest') df2 = imresize(df2, self.inputRes, interp='nearest') df1 = np.array(df1, dtype=np.float32) df1 = df1/np.max([df1.max(), 1e-8]) df2 = np.array(df2, dtype=np.float32) df2 = df2/np.max([df2.max(), 1e-8]) return df1, df2
Example #20
Source File: dataset_manager.py From DexiNed with MIT License | 6 votes |
def transformer(self, x_path, y_path): tmp_x = cv.imread(x_path) if y_path is not None: tmp_y = cv.imread(y_path,cv.IMREAD_GRAYSCALE) else: tmp_y=None h,w,_ = tmp_x.shape if self.args.model_state == "train": if self.args.crop_img: i_h = random.randint(0,h-self.dim_h) i_w = random.randint(0,w-self.dim_w) tmp_x = tmp_x[i_h:i_h+self.dim_h,i_w:i_w+self.dim_w,] tmp_y = tmp_y[i_h:i_h+self.dim_h,i_w:i_w+self.dim_w,] else: tmp_x = cv.resize(tmp_x,(self.dim_w,self.dim_h)) tmp_y = cv.resize(tmp_y,(self.dim_w,self.dim_h)) else: if self.dim_w!=w and self.dim_h!=h: tmp_x = cv.resize(tmp_x, (self.dim_w, self.dim_h)) if self.args.scale is not None: scl = self.args.scale scl_h = int(self.dim_h * scl) if (self.dim_h * scl) % 16 == 0 else \ int(((self.dim_h * scl) // 16 + 1) * 16) scl_w = int(self.dim_w * scl) if (self.dim_w * scl) % 16 == 0 else \ int(((self.dim_h * scl) // 16 + 1) * 16) tmp_x = cv.resize(tmp_x,dsize=(scl_w,scl_h)) if tmp_y is not None: tmp_y = cv.resize(tmp_y, (self.dim_w, self.dim_h)) if tmp_y is not None: tmp_y = np.expand_dims(np.float32(tmp_y)/255.,axis=-1) tmp_x = np.float32(tmp_x) return tmp_x, tmp_y # def __read_h5(self,file_path): # # with h5py.File(file_path,'r') as h5f: # # n_var = len(list(h5f.keys())) # data = np.array(h5f.get('data')) # return data
Example #21
Source File: main.py From DexiNed with MIT License | 6 votes |
def __getitem__(self, idx): # get data sample image_path, label_path = self.data_index[idx] # load data image = cv.imread(image_path, cv.IMREAD_COLOR) label = cv.imread(label_path, cv.IMREAD_GRAYSCALE) image, label = self.transform(img=image, gt=label) return dict(images=image, labels=label)
Example #22
Source File: exp13_user_dataset_high_API_1.py From LearningTensorflow with MIT License | 6 votes |
def __read__(file, label): image = cv2.imread(file.decode(), cv2.IMREAD_GRAYSCALE) image = np.expand_dims(image, 2) image = np.float32(image) / 255. return (image, label)
Example #23
Source File: datasets.py From pytorch-segmentation-toolbox with MIT License | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) label = self.id2trainId(label) size = image.shape name = datafiles["name"] if self.scale: image, label = self.generate_scale_label(image, label) image = np.asarray(image, np.float32) image -= self.mean img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) # roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h); image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) #image = image[:, :, ::-1] # change to BGR image = image.transpose((2, 0, 1)) if self.is_mirror: flip = np.random.choice(2) * 2 - 1 image = image[:, :, ::flip] label = label[:, ::flip] return image.copy(), label.copy(), np.array(size), name
Example #24
Source File: image.py From dataflow with Apache License 2.0 | 6 votes |
def __init__(self, files, channel=3, resize=None, shuffle=False): """ Args: files (list): list of file paths. channel (int): 1 or 3. Will convert grayscale to RGB images if channel==3. Will produce (h, w, 1) array if channel==1. resize (tuple): int or (h, w) tuple. If given, resize the image. """ assert len(files), "No image files given to ImageFromFile!" self.files = files self.channel = int(channel) assert self.channel in [1, 3], self.channel self.imread_mode = cv2.IMREAD_GRAYSCALE if self.channel == 1 else cv2.IMREAD_COLOR if resize is not None: resize = shape2d(resize) self.resize = resize self.shuffle = shuffle
Example #25
Source File: datasets.py From pytorch-segmentation-toolbox with MIT License | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) size = image.shape name = datafiles["name"] if self.scale: image, label = self.generate_scale_label(image, label) image = np.asarray(image, np.float32) image -= self.mean img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) # roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h); image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) #image = image[:, :, ::-1] # change to BGR image = image.transpose((2, 0, 1)) if self.is_mirror: flip = np.random.choice(2) * 2 - 1 image = image[:, :, ::flip] label = label[:, ::flip] return image.copy(), label.copy(), np.array(size), name
Example #26
Source File: charades.py From PyTorchConv3D with Apache License 2.0 | 6 votes |
def load_flow_frames(image_dir, vid, start, num): frames = [] for i in range(start, start+num): imgx = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'x.jpg'), cv2.IMREAD_GRAYSCALE) imgy = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'y.jpg'), cv2.IMREAD_GRAYSCALE) w,h = imgx.shape if w < 224 or h < 224: d = 224.-min(w,h) sc = 1+d/min(w,h) imgx = cv2.resize(imgx,dsize=(0,0),fx=sc,fy=sc) imgy = cv2.resize(imgy,dsize=(0,0),fx=sc,fy=sc) imgx = (imgx/255.)*2 - 1 imgy = (imgy/255.)*2 - 1 img = np.asarray([imgx, imgy]).transpose([1,2,0]) frames.append(img) return np.asarray(frames, dtype=np.float32)
Example #27
Source File: camvid.py From Fast_Seg with Apache License 2.0 | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) size = image.shape name = datafiles["name"] if self.f_scale != 1: image = cv2.resize(image, None, fx=self.f_scale, fy=self.f_scale, interpolation=cv2.INTER_LINEAR) label = cv2.resize(label, None, fx=self.f_scale, fy=self.f_scale, interpolation = cv2.INTER_NEAREST) label[label == 11] = self.ignore_label image = np.asarray(image, np.float32) if self.rgb: image = image[:, :, ::-1] ## BGR -> RGB image /= 255 ## using pytorch pretrained models image -= self.mean image /= self.vars image = image.transpose((2, 0, 1)) # HWC -> CHW # print('image.shape:',image.shape) return image.copy(), label.copy(), np.array(size), name
Example #28
Source File: create_dataset.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def checkImageIsValid(imageBin): if imageBin is None: return False imageBuf = np.fromstring(imageBin, dtype=np.uint8) img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE) imgH, imgW = img.shape[0], img.shape[1] if imgH * imgW == 0: return False return True
Example #29
Source File: image_descriptor.py From netvlad_tf_open with MIT License | 6 votes |
def describeAllJpegsInPath(self, path, batch_size, verbose=False): ''' returns a list of descriptors ''' jpeg_paths = sorted(glob.glob(os.path.join(path, '*.jpg'))) descs = [] for batch_offset in range(0, len(jpeg_paths), batch_size): images = [] for i in range(batch_offset, batch_offset + batch_size): if i == len(jpeg_paths): break if verbose: print('%d/%d' % (i, len(jpeg_paths))) if self.is_grayscale: image = cv2.imread(jpeg_paths[i], cv2.IMREAD_GRAYSCALE) images.append(np.expand_dims( np.expand_dims(image, axis=0), axis=-1)) else: image = cv2.imread(jpeg_paths[i]) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) images.append(np.expand_dims(image, axis=0)) batch = np.concatenate(images, 0) descs = descs + list(self.sess.run( self.net_out, feed_dict={self.tf_batch: batch})) return descs
Example #30
Source File: captcha_generator.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def main(): parser = argparse.ArgumentParser() parser.add_argument("font_path", help="Path to ttf font file") parser.add_argument("output", help="Output filename including extension (e.g. 'sample.jpg')") parser.add_argument("--num", help="Up to 4 digit number [Default: random]") args = parser.parse_args() captcha = ImageCaptcha(fonts=[args.font_path]) captcha_str = args.num if args.num else DigitCaptcha.get_rand(3, 4) img = captcha.generate(captcha_str) img = np.fromstring(img.getvalue(), dtype='uint8') img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) cv2.imwrite(args.output, img) print("Captcha image with digits {} written to {}".format([int(c) for c in captcha_str], args.output))