Python cv2.COLOR_RGB2GRAY Examples
The following are 30
code examples of cv2.COLOR_RGB2GRAY().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: plate_locate.py From EasyPR-python with Apache License 2.0 | 8 votes |
def sobelOperT(self, img, blursize, morphW, morphH): ''' No different with sobelOper ? ''' blur = cv2.GaussianBlur(img, (blursize, blursize), 0, 0, cv2.BORDER_DEFAULT) if len(blur.shape) == 3: gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY) else: gray = blur x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, 3) absX = cv2.convertScaleAbs(x) grad = cv2.addWeighted(absX, 1, 0, 0, 0) _, threshold = cv2.threshold(grad, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) element = cv2.getStructuringElement(cv2.MORPH_RECT, (morphW, morphH)) threshold = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, element) return threshold
Example #2
Source File: object_detection_2d_photometric_ops.py From data_generator_object_detection_2d with GNU General Public License v3.0 | 7 votes |
def __call__(self, image, labels=None): if self.current == 'RGB' and self.to == 'HSV': image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) elif self.current == 'RGB' and self.to == 'GRAY': image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) if self.keep_3ch: image = np.stack([image] * 3, axis=-1) elif self.current == 'HSV' and self.to == 'RGB': image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB) elif self.current == 'HSV' and self.to == 'GRAY': image = cv2.cvtColor(image, cv2.COLOR_HSV2GRAY) if self.keep_3ch: image = np.stack([image] * 3, axis=-1) if labels is None: return image else: return image, labels
Example #3
Source File: atari_wrapper.py From tf2rl with MIT License | 6 votes |
def observation(self, obs): if self._key is None: frame = obs else: frame = obs[self._key] if self._grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize( frame, (self._width, self._height), interpolation=cv2.INTER_AREA ) if self._grayscale: frame = np.expand_dims(frame, -1) if self._key is None: obs = frame else: obs = obs.copy() obs[self._key] = frame return obs
Example #4
Source File: rule_based.py From PythonPilot with Apache License 2.0 | 6 votes |
def __apply_canny(self, src, ksize=7, sigma=1.2, low_th=10, high_th=70): """Apply canny edge detection. Args: src (int): Input image BGR. numpy.ndarray, (720, 1280, 3), 0~255 Returns: dst (int): Output image. numpy.ndarray, (720, 1280), 0~1 """ gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY) blur_gray = cv2.GaussianBlur(gray,(ksize, ksize), sigma) dst = cv2.Canny(blur_gray, low_th, high_th) // 255 return dst
Example #5
Source File: atari_wrappers.py From torchbeast with Apache License 2.0 | 6 votes |
def observation(self, obs): if self._key is None: frame = obs else: frame = obs[self._key] if self._grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize( frame, (self._width, self._height), interpolation=cv2.INTER_AREA ) if self._grayscale: frame = np.expand_dims(frame, -1) if self._key is None: obs = frame else: obs = obs.copy() obs[self._key] = frame return obs
Example #6
Source File: functional.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def adjust_saturation(img, saturation_factor): """Adjust color saturation of an image. Args: img (CV Image): CV Image to be adjusted. saturation_factor (float): How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the saturation by a factor of 2. Returns: CV Image: Saturation adjusted image. """ if not _is_numpy_image(img): raise TypeError('img should be CV Image. Got {}'.format(type(img))) im = img.astype(np.float32) degenerate = cv2.cvtColor( cv2.cvtColor( im, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB) im = (1 - saturation_factor) * degenerate + saturation_factor * im im = im.clip(min=0, max=255) return im.astype(img.dtype)
Example #7
Source File: functional.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def adjust_contrast(img, contrast_factor): """Adjust contrast of an Image. Args: img (CV Image): CV Image to be adjusted. contrast_factor (float): How much to adjust the contrast. Can be any non negative number. 0 gives a solid gray image, 1 gives the original image while 2 increases the contrast by a factor of 2. Returns: CV Image: Contrast adjusted image. """ if not _is_numpy_image(img): raise TypeError('img should be CV Image. Got {}'.format(type(img))) im = img.astype(np.float32) mean = round(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY).mean()) im = (1 - contrast_factor) * mean + contrast_factor * im im = im.clip(min=0, max=255) return im.astype(img.dtype)
Example #8
Source File: imgproc.py From dataflow with Apache License 2.0 | 6 votes |
def _augment(self, img, r): old_dtype = img.dtype if img.ndim == 3: if self.rgb is not None: m = cv2.COLOR_RGB2GRAY if self.rgb else cv2.COLOR_BGR2GRAY grey = cv2.cvtColor(img.astype('float32'), m) mean = np.mean(grey) else: mean = np.mean(img, axis=(0, 1), keepdims=True) else: mean = np.mean(img) img = img * r + mean * (1 - r) if self.clip or old_dtype == np.uint8: img = np.clip(img, 0, 255) return img.astype(old_dtype)
Example #9
Source File: opencv_functional.py From deep-smoke-machine with BSD 3-Clause "New" or "Revised" License | 6 votes |
def to_grayscale(img, num_output_channels=1): """Convert image to grayscale version of image. Args: img (numpy ndarray): Image to be converted to grayscale. Returns: numpy ndarray: Grayscale version of the image. if num_output_channels = 1 : returned image is single channel if num_output_channels = 3 : returned image is 3 channel with r = g = b """ if not _is_numpy_image(img): raise TypeError('img should be numpy ndarray. Got {}'.format(type(img))) if num_output_channels==1: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis] elif num_output_channels==3: # much faster than doing cvtColor to go back to gray img = np.broadcast_to(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis], img.shape) return img
Example #10
Source File: functional.py From opencv_transforms with MIT License | 6 votes |
def to_grayscale(img, num_output_channels=1): """Convert image to grayscale version of image. Args: img (numpy ndarray): Image to be converted to grayscale. Returns: numpy ndarray: Grayscale version of the image. if num_output_channels = 1 : returned image is single channel if num_output_channels = 3 : returned image is 3 channel with r = g = b """ if not _is_numpy_image(img): raise TypeError('img should be numpy ndarray. Got {}'.format(type(img))) if num_output_channels==1: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis] elif num_output_channels==3: # much faster than doing cvtColor to go back to gray img = np.broadcast_to(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:,:,np.newaxis], img.shape) return img
Example #11
Source File: CVFeatures.py From videofeatures with MIT License | 6 votes |
def computeFeatures(self, video): descriptor_array = [] for i in range(video.shape[0]): frame = cv2.cvtColor(video[i], cv2.COLOR_RGB2GRAY).astype('uint8') _, descriptors = cv2.xfeatures2d.SURF_create().detectAndCompute(frame, None) # make sure that descriptors have shape (n_descriptor, 64) if descriptors is not None: if descriptors.shape[0] < self.n_descriptors: descriptors = np.concatenate([descriptors, np.zeros((self.n_descriptors - descriptors.shape[0], 64))], axis=0) else: descriptors = descriptors[:self.n_descriptors] else: descriptors = np.zeros((self.n_descriptors, 64)) assert descriptors.shape == (self.n_descriptors, 64) descriptor_array.append(descriptors) return np.concatenate(descriptor_array, axis=0)
Example #12
Source File: CVFeatures.py From videofeatures with MIT License | 6 votes |
def computeFeatures(self, video): """ todo: improve documentation Computes SIFT features for a single video. :param video: a video of shape (n_frames, width, height, channel) :return: the features, shape () """ descriptor_array = [] for i in range(video.shape[0]): frame = cv2.cvtColor(video[i], cv2.COLOR_RGB2GRAY).astype('uint8') _, descriptors = cv2.xfeatures2d.SIFT_create(nfeatures=self.n_descriptors).detectAndCompute(frame, None) if descriptors is not None: if descriptors.shape[0] < self.n_descriptors: descriptors = np.concatenate([descriptors, np.zeros((self.n_descriptors - descriptors.shape[0], 128))], axis=0) else: descriptors = descriptors[:self.n_descriptors] else: descriptors = np.zeros((self.n_descriptors, 128)) assert descriptors.shape == (self.n_descriptors, 128) descriptor_array.append(descriptors) features = np.concatenate(descriptor_array, axis=0) return features
Example #13
Source File: dataset_scene.py From Decoupled-attention-network with MIT License | 6 votes |
def keepratio_resize(self, img): cur_ratio = img.size[0] / float(img.size[1]) mask_height = self.img_height mask_width = self.img_width img = np.array(img) if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) if cur_ratio > self.target_ratio: cur_target_height = self.img_height cur_target_width = self.img_width else: cur_target_height = self.img_height cur_target_width = int(self.img_height * cur_ratio) img = cv2.resize(img, (cur_target_width, cur_target_height)) start_x = int((mask_height - img.shape[0])/2) start_y = int((mask_width - img.shape[1])/2) mask = np.zeros([mask_height, mask_width]).astype(np.uint8) mask[start_x : start_x + img.shape[0], start_y : start_y + img.shape[1]] = img img = mask return img
Example #14
Source File: dqn_atari.py From cleanrl with MIT License | 6 votes |
def observation(self, obs): if self._key is None: frame = obs else: frame = obs[self._key] if self._grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize( frame, (self._width, self._height), interpolation=cv2.INTER_AREA ) if self._grayscale: frame = np.expand_dims(frame, -1) if self._key is None: obs = frame else: obs = obs.copy() obs[self._key] = frame return obs
Example #15
Source File: device.py From fitch with MIT License | 5 votes |
def screen_shot_to_object(self) -> np.ndarray: """ screen shot and return numpy array (data saved in memory) """ pic_path = self.screen_shot() # temp file will be automatically removed after usage data = cv2.imread(pic_path, cv2.COLOR_RGB2GRAY) os.remove(pic_path) return data
Example #16
Source File: agc_demos.py From ICML2019-TREX with MIT License | 5 votes |
def GrayScaleWarpImage(image): """Warp frames to 84x84 as done in the Nature paper and later work.""" width=84 height=84 frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA) #frame = np.expand_dims(frame, -1) return frame
Example #17
Source File: env.py From Street-fighter-A3C-ICM-pytorch with MIT License | 5 votes |
def process_frame(frame): if frame is not None: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (168, 168))[None, :, :] / 255. return frame else: return np.zeros((1, 168, 168))
Example #18
Source File: atari_wrappers.py From ICML2019-TREX with MIT License | 5 votes |
def observation(self, frame): if self.grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) if self.grayscale: frame = np.expand_dims(frame, -1) return frame
Example #19
Source File: atari_wrappers.py From ICML2019-TREX with MIT License | 5 votes |
def observation(self, frame): if self.grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) if self.grayscale: frame = np.expand_dims(frame, -1) return frame
Example #20
Source File: utils.py From Deep-Q-Learning-Paper-To-Code with MIT License | 5 votes |
def observation(self, obs): new_frame = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY) resized_screen = cv2.resize(new_frame, self.shape[1:], interpolation=cv2.INTER_AREA) new_obs = np.array(resized_screen, dtype=np.uint8).reshape(self.shape) new_obs = np.swapaxes(new_obs, 2,0) new_obs = new_obs / 255.0 return new_obs
Example #21
Source File: utils.py From Deep-Q-Learning-Paper-To-Code with MIT License | 5 votes |
def observation(self, obs): new_frame = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY) resized_screen = cv2.resize(new_frame, self.shape[1:], interpolation=cv2.INTER_AREA) new_obs = np.array(resized_screen, dtype=np.uint8).reshape(self.shape) new_obs = np.swapaxes(new_obs, 2,0) new_obs = new_obs / 255.0 return new_obs
Example #22
Source File: rule_based.py From PythonPilot with Apache License 2.0 | 5 votes |
def __apply_multi_threshold(self, src): """Apply multi thresholding using LAB, HLS and HSV. Args: src (int): Input image BGR. numpy.ndarray, (720, 1280, 3), 0~255 Returns: dst (int): Output image. numpy.ndarray, (720, 1280), 0~1 """ settings = [] settings.append({'cspace': 'LAB', 'channel': 2, 'clipLimit': 2.0, 'threshold': 190}) settings.append({'cspace': 'HLS', 'channel': 1, 'clipLimit': 1.0, 'threshold': 200}) settings.append({'cspace': 'HSV', 'channel': 2, 'clipLimit': 3.0, 'threshold': 230}) gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY) dst = np.zeros_like(gray) for s in settings: color_t = getattr(cv2, 'COLOR_RGB2{}'.format(s['cspace'])) gray = cv2.cvtColor(src, color_t)[:,:,s['channel']] clahe = cv2.createCLAHE(s['clipLimit'], tileGridSize=(8,8)) norm_img = clahe.apply(gray) binary = np.zeros_like(norm_img) binary[(norm_img >= s['threshold']) & (norm_img <= 255)] = 1 dst[(dst == 1) | (binary == 1)] = 1 return dst
Example #23
Source File: utils.py From Deep-Q-Learning-Paper-To-Code with MIT License | 5 votes |
def observation(self, obs): new_frame = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY) resized_screen = cv2.resize(new_frame, self.shape[1:], interpolation=cv2.INTER_AREA) new_obs = np.array(resized_screen, dtype=np.uint8).reshape(self.shape) new_obs = np.swapaxes(new_obs, 2,0) new_obs = new_obs / 255.0 return new_obs
Example #24
Source File: utils.py From Deep-Q-Learning-Paper-To-Code with MIT License | 5 votes |
def observation(self, obs): new_frame = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY) resized_screen = cv2.resize(new_frame, self.shape[1:], interpolation=cv2.INTER_AREA) new_obs = np.array(resized_screen, dtype=np.uint8).reshape(self.shape) new_obs = new_obs / 255.0 return new_obs
Example #25
Source File: utils.py From Deep-Q-Learning-Paper-To-Code with MIT License | 5 votes |
def observation(self, obs): new_frame = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY) resized_screen = cv2.resize(new_frame, self.shape[1:], interpolation=cv2.INTER_AREA) new_obs = np.array(resized_screen, dtype=np.uint8).reshape(self.shape) new_obs = new_obs / 255.0 return new_obs
Example #26
Source File: datagen.py From Convolutional-Pose-Machine-tf with GNU Lesser General Public License v3.0 | 5 votes |
def test(self, toWait=0.2): """ TESTING METHOD You can run it to see if the preprocessing is well done. Wait few seconds for loading, then diaporama appears with image and highlighted joints /!\ Use Esc to quit Args: toWait : In sec, time between pictures """ self._create_train_table() self._create_sets() for i in range(len(self.train_set)): img = self.open_img(self.train_set[i]) w = self.data_dict[self.train_set[i]]['weights'] padd, box = self._crop_data(img.shape[0], img.shape[1], self.data_dict[self.train_set[i]]['box'], self.data_dict[self.train_set[i]]['joints'], boxp=0.0) new_j = self._relative_joints(box, padd, self.data_dict[self.train_set[i]]['joints'], to_size=self.in_size) rhm = self._generate_hm(self.in_size, self.in_size, new_j, self.in_size, w) rimg = self._crop_img(img, padd, box) # See Error in self._generator # rimg = cv2.resize(rimg, (self.in_size,self.in_size)) rimg = scm.imresize(rimg, (self.in_size, self.in_size)) # rhm = np.zeros((self.in_size,self.in_size,16)) # for i in range(16): # rhm[:,:,i] = cv2.resize(rHM[:,:,i], (self.in_size,self.in_size)) grimg = cv2.cvtColor(rimg, cv2.COLOR_RGB2GRAY) cv2.imshow('image', grimg / 255 + np.sum(rhm, axis=2)) # Wait time.sleep(toWait) if cv2.waitKey(1) == 27: print('Ended') cv2.destroyAllWindows() break # ------------------------------- PCK METHODS-------------------------------
Example #27
Source File: toolbox.py From stagesepx with MIT License | 5 votes |
def turn_grey(old: np.ndarray) -> np.ndarray: try: return cv2.cvtColor(old, cv2.COLOR_RGB2GRAY) except cv2.error: return old
Example #28
Source File: toolbox.py From findit with MIT License | 5 votes |
def turn_grey(old: np.ndarray) -> np.ndarray: try: return cv2.cvtColor(old, cv2.COLOR_RGB2GRAY) except cv2.error: return old
Example #29
Source File: visual_augmentation.py From face_landmark with Apache License 2.0 | 5 votes |
def gray(src): g_img=cv2.cvtColor(src,cv2.COLOR_RGB2GRAY) src[:,:,0]=g_img src[:,:,1]=g_img src[:,:,2]=g_img return src
Example #30
Source File: atari_wrappers_deprecated.py From learning2run with MIT License | 5 votes |
def process(frame): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (84, 84), interpolation=cv2.INTER_AREA) return frame.reshape(84, 84, 1)