Python cv2.NORM_L2 Examples
The following are 15
code examples of cv2.NORM_L2().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: find_obj.py From OpenCV-Python-Tutorial with MIT License | 10 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.xfeatures2d.SIFT_create() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.xfeatures2d.SURF_create(800) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB_create(400) norm = cv2.NORM_HAMMING elif chunks[0] == 'akaze': detector = cv2.AKAZE_create() norm = cv2.NORM_HAMMING elif chunks[0] == 'brisk': detector = cv2.BRISK_create() norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #2
Source File: distance_ransac_orb.py From douglas-quaid with GNU General Public License v3.0 | 6 votes |
def filter_matrix_corners_homography(pts, max, matrix) -> (float, List): ''' Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center), and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other? Return a distance and a list of the transformed points ''' # Transform the 4 corners thanks to the transformation matrix calculated transformed_pts = cv2.perspectiveTransform(pts, matrix) # Compute the difference between original and modified position of points dist = round(cv2.norm(pts - transformed_pts, cv2.NORM_L2) / max, 10) # sqrt((X1-X2)²+(Y1-Y2)²+...) # Totally an heuristic (geometry based): if dist < 0.20: return dist, transformed_pts else: return 1, transformed_pts
Example #3
Source File: distance_ransac_orb.py From douglas-quaid with GNU General Public License v3.0 | 6 votes |
def filter_matrix_corners_affine(pts, max, matrix) -> (float, List): ''' Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center), and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other? Return a distance and a list of the transformed points ''' # Make affine transformation add_row = np.array([[0, 0, 1]]) affine_matrix = np.concatenate((matrix, add_row), axis=0) transformed_pts_affine = cv2.perspectiveTransform(pts, affine_matrix) # Affine distance tmp_dist_affine = round(cv2.norm(pts - transformed_pts_affine, cv2.NORM_L2) / max, 10) # sqrt((X1-X2)²+(Y1-Y2)²+...) # Totally an heuristic (geometry based): if tmp_dist_affine < 0.20: return tmp_dist_affine, transformed_pts_affine else: return 1, transformed_pts_affine
Example #4
Source File: findobj.py From airtest with BSD 3-Clause "New" or "Revised" License | 6 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.SIFT() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.SURF(800) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB(400) norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #5
Source File: find_obj.py From airtest with BSD 3-Clause "New" or "Revised" License | 6 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.SIFT() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.SURF(800) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB(400) norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #6
Source File: feature_matcher.py From pyslam with GNU General Public License v3.0 | 6 votes |
def __init__(self, norm_type=cv2.NORM_HAMMING, cross_check = False, ratio_test=kRatioTest, type = FeatureMatcherTypes.FLANN): super().__init__(norm_type=norm_type, cross_check=cross_check, ratio_test=ratio_test, type=type) if norm_type == cv2.NORM_HAMMING: # FLANN parameters for binary descriptors FLANN_INDEX_LSH = 6 self.index_params= dict(algorithm = FLANN_INDEX_LSH, # Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) # 2 if norm_type == cv2.NORM_L2: # FLANN parameters for float descriptors FLANN_INDEX_KDTREE = 1 self.index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 4) self.search_params = dict(checks=32) # or pass empty dictionary self.matcher = cv2.FlannBasedMatcher(self.index_params, self.search_params) self.matcher_name = 'FlannFeatureMatcher'
Example #7
Source File: descriptors.py From hfnet with MIT License | 6 votes |
def matching(desc1, desc2, do_ratio_test=False, cross_check=True): if desc1.dtype == np.bool and desc2.dtype == np.bool: desc1, desc2 = np.packbits(desc1, axis=1), np.packbits(desc2, axis=1) norm = cv2.NORM_HAMMING else: desc1, desc2 = np.float32(desc1), np.float32(desc2) norm = cv2.NORM_L2 if do_ratio_test: matches = [] matcher = cv2.BFMatcher(norm) for m, n in matcher.knnMatch(desc1, desc2, k=2): m.distance = 1.0 if (n.distance == 0) else m.distance / n.distance matches.append(m) else: matcher = cv2.BFMatcher(norm, crossCheck=cross_check) matches = matcher.match(desc1, desc2) return matches_cv2np(matches)
Example #8
Source File: find_obj.py From ImageAnalysis with MIT License | 6 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.SIFT() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.SURF(400) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB(400) norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #9
Source File: find_obj.py From PyCV-time with MIT License | 6 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.SIFT() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.SURF(800) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB(400) norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #10
Source File: cv_detection_right_hand.py From AI-Robot-Challenge-Lab with MIT License | 5 votes |
def __rotate_image_size_corrected(image, angle): # Calculate max size for the rotated template and image offset image_size_height, image_size_width = image.shape image_center_x = image_size_width // 2 image_center_y = image_size_height // 2 # Create rotation matrix rotation_matrix = cv2.getRotationMatrix2D((image_center_x, image_center_y), -angle, 1) # Apply offset new_image_size = int(math.ceil(cv2.norm((image_size_height, image_size_width), normType=cv2.NORM_L2))) rotation_matrix[0, 2] += (new_image_size - image_size_width) / 2 rotation_matrix[1, 2] += (new_image_size - image_size_height) / 2 # Apply rotation to the template image_rotated = cv2.warpAffine(image, rotation_matrix, (new_image_size, new_image_size)) return image_rotated
Example #11
Source File: distance_ransac_orb.py From douglas-quaid with GNU General Public License v3.0 | 5 votes |
def compute_matrix_pictures_corners(): # Get the size of the current matching picture # TODO : Store somewhere the shape of the uploaded picture ? # h, w, d = pic1.image.shape # TODO : For now, just take a random size picture h, w, d = 1000, 1000, 3 # Get the position of the 4 corners of the current matching picture pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2) max = 4 * cv2.norm(np.float32([[w, h]]), cv2.NORM_L2) return pts, max
Example #12
Source File: camera_calibration.py From camera_calibration_API with Apache License 2.0 | 5 votes |
def _calc_reprojection_error(self,figure_size=(8,8),save_dir=None): """ Util function to Plot reprojection error """ reprojection_error = [] for i in range(len(self.calibration_df)): imgpoints2, _ = cv2.projectPoints(self.calibration_df.obj_points[i], self.calibration_df.rvecs[i], self.calibration_df.tvecs[i], self.camera_matrix, self.dist_coefs) temp_error = cv2.norm(self.calibration_df.img_points[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2) reprojection_error.append(temp_error) self.calibration_df['reprojection_error'] = pd.Series(reprojection_error) avg_error = np.sum(np.array(reprojection_error))/len(self.calibration_df.obj_points) x = [os.path.basename(p) for p in self.calibration_df.image_names] y_mean = [avg_error]*len(self.calibration_df.image_names) fig,ax = plt.subplots() fig.set_figwidth(figure_size[0]) fig.set_figheight(figure_size[1]) # Plot the data ax.scatter(x,reprojection_error,label='Reprojection error', marker='o') #plot before # Plot the average line ax.plot(x,y_mean, label='Mean Reprojection error', linestyle='--') # Make a legend ax.legend(loc='upper right') for tick in ax.get_xticklabels(): tick.set_rotation(90) # name x and y axis ax.set_title("Reprojection_error plot") ax.set_xlabel("Image_names") ax.set_ylabel("Reprojection error in pixels") if save_dir: plt.savefig(os.path.join(save_dir,"reprojection_error.png")) plt.show() print("The Mean Reprojection Error in pixels is: {}".format(avg_error))
Example #13
Source File: find_obj.py From PyCV-time with MIT License | 5 votes |
def init_feature(name): chunks = name.split('-') if chunks[0] == 'sift': detector = cv2.xfeatures2d.SIFT() norm = cv2.NORM_L2 elif chunks[0] == 'surf': detector = cv2.xfeatures2d.SURF(800) norm = cv2.NORM_L2 elif chunks[0] == 'orb': detector = cv2.ORB(400) norm = cv2.NORM_HAMMING elif chunks[0] == 'akaze': detector = cv2.AKAZE() norm = cv2.NORM_HAMMING elif chunks[0] == 'brisk': detector = cv2.BRISK() norm = cv2.NORM_HAMMING else: return None, None if 'flann' in chunks: if norm == cv2.NORM_L2: flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) else: flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) else: matcher = cv2.BFMatcher(norm) return detector, matcher
Example #14
Source File: core.py From idmatch with MIT License | 5 votes |
def normalize_result(webcam, idcard): diff_correy = cv2.norm(settings.COREY_MATRIX, idcard, cv2.NORM_L2) diff_wilde = cv2.norm(settings.WILDE_MATRIX, idcard, cv2.NORM_L2) diff_min = diff_correy if diff_correy < diff_wilde else diff_wilde diff = cv2.norm(webcam, idcard, cv2.NORM_L2) score = float(diff) / float(diff_min) percentage = (1.28 - score * score * score) * 10000 / 128 return { 'percentage': percentage, 'score': score, 'message': utils.matching_message(score) }
Example #15
Source File: matcher.py From ImageAnalysis with MIT License | 4 votes |
def configure(): global detect_scale global the_matcher global max_distance global min_pairs detect_scale = detector_node.getFloat('scale') detector_str = detector_node.getString('detector') if detector_str == 'SIFT' or detector_str == 'SURF': norm = cv2.NORM_L2 max_distance = 270.0 elif detector_str == 'ORB' or detector_str == 'Star': norm = cv2.NORM_HAMMING max_distance = 64 else: log("Detector not specified or not known:", detector_str) quit() # work around a feature/bug: flann enums don't exist FLANN_INDEX_KDTREE = 1 FLANN_INDEX_LSH = 6 if norm == cv2.NORM_L2: flann_params = { 'algorithm': FLANN_INDEX_KDTREE, 'trees': 5 } else: flann_params = { 'algorithm': FLANN_INDEX_LSH, 'table_number': 6, # 12 'key_size': 12, # 20 'multi_probe_level': 1 #2 } search_params = { 'checks': 100 } the_matcher = cv2.FlannBasedMatcher(flann_params, search_params) min_pairs = matcher_node.getFloat('min_pairs') # Iterate through all the matches for the specified image and # delete keypoints that don't satisfy the homography (or # fundamental) relationship. Returns true if match set is clean, false # if keypoints were removed. # # Notice: this tends to eliminate matches that aren't all on the # same plane, so if the scene has a lot of depth, this could knock # out a lot of good matches.