Python cv2.findContours() Examples
The following are 30
code examples of cv2.findContours().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: chapter2.py From OpenCV-Computer-Vision-Projects-with-Python with MIT License | 19 votes |
def FindHullDefects(self, segment): _,contours,hierarchy = cv2.findContours(segment, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # find largest area contour max_area = -1 for i in range(len(contours)): area = cv2.contourArea(contours[i]) if area>max_area: cnt = contours[i] max_area = area cnt = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True) hull = cv2.convexHull(cnt, returnPoints=False) defects = cv2.convexityDefects(cnt, hull) return [cnt,defects]
Example #2
Source File: pycv2.py From vrequest with MIT License | 16 votes |
def laplacian(filepathname): v = cv2.imread(filepathname) s = cv2.cvtColor(v, cv2.COLOR_BGR2GRAY) s = cv2.Laplacian(s, cv2.CV_16S, ksize=3) s = cv2.convertScaleAbs(s) cv2.imshow('nier',s) return s # ret, binary = cv2.threshold(s,40,255,cv2.THRESH_BINARY) # contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # for c in contours: # x,y,w,h = cv2.boundingRect(c) # if w>5 and h>10: # cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1) # cv2.imshow('nier2',v) # cv2.waitKey() # cv2.destroyAllWindows()
Example #3
Source File: generate_coco_json.py From coco-json-converter with GNU General Public License v3.0 | 14 votes |
def __get_annotation__(self, mask, image=None): _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) segmentation = [] for contour in contours: # Valid polygons have >= 6 coordinates (3 points) if contour.size >= 6: segmentation.append(contour.flatten().tolist()) RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1]) RLE = cocomask.merge(RLEs) # RLE = cocomask.encode(np.asfortranarray(mask)) area = cocomask.area(RLE) [x, y, w, h] = cv2.boundingRect(mask) if image is not None: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.drawContours(image, contours, -1, (0,255,0), 1) cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2) cv2.imshow("", image) cv2.waitKey(1) return segmentation, [x, y, w, h], area
Example #4
Source File: thresholding.py From smashscan with MIT License | 12 votes |
def contour_filter(self, frame): _, contours, _ = cv2.findContours(frame, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) new_frame = np.zeros(frame.shape, np.uint8) for i, contour in enumerate(contours): c_area = cv2.contourArea(contour) if self.contour_min_area <= c_area <= self.contour_max_area: mask = np.zeros(frame.shape, np.uint8) cv2.drawContours(mask, contours, i, 255, cv2.FILLED) mask = cv2.bitwise_and(frame, mask) new_frame = cv2.bitwise_or(new_frame, mask) frame = new_frame if self.contour_disp_flag: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR) cv2.drawContours(frame, contours, -1, (255, 0, 0), 1) return frame # A number of methods corresponding to the various trackbars available.
Example #5
Source File: segment.py From gesture-recognition with MIT License | 12 votes |
def segment(image, threshold=25): global bg # find the absolute difference between background and current frame diff = cv2.absdiff(bg.astype("uint8"), image) # threshold the diff image so that we get the foreground thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1] # get the contours in the thresholded image (_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # return None, if no contours detected if len(cnts) == 0: return else: # based on contour area, get the maximum contour which is the hand segmented = max(cnts, key=cv2.contourArea) return (thresholded, segmented) #----------------- # MAIN FUNCTION #-----------------
Example #6
Source File: motion.py From object-detection with MIT License | 10 votes |
def prediction(self, image): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.GaussianBlur(image, (21, 21), 0) if self.avg is None: self.avg = image.copy().astype(float) cv2.accumulateWeighted(image, self.avg, 0.5) frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg)) thresh = cv2.threshold( frameDelta, DELTA_THRESH, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) cnts = cv2.findContours( thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) self.avg = image.copy().astype(float) return cnts
Example #7
Source File: squares.py From OpenCV-Python-Tutorial with MIT License | 9 votes |
def find_squares(img): img = cv2.GaussianBlur(img, (5, 5), 0) squares = [] for gray in cv2.split(img): for thrs in xrange(0, 255, 26): if thrs == 0: bin = cv2.Canny(gray, 0, 50, apertureSize=5) bin = cv2.dilate(bin, None) else: retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY) bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: cnt_len = cv2.arcLength(cnt, True) cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True) if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt): cnt = cnt.reshape(-1, 2) max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)]) if max_cos < 0.1: squares.append(cnt) return squares
Example #8
Source File: size_detector.py From gaps with MIT License | 9 votes |
def _find_size_candidates(self, image): binary_image = self._filter_image(image) _, contours, _ = cv2.findContours(binary_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) size_candidates = [] for contour in contours: bounding_rect = cv2.boundingRect(contour) contour_area = cv2.contourArea(contour) if self._is_valid_contour(contour_area, bounding_rect): candidate = (bounding_rect[2] + bounding_rect[3]) / 2 size_candidates.append(candidate) return size_candidates
Example #9
Source File: pycv2.py From vrequest with MIT License | 8 votes |
def canny(filepathname, left=70, right=140): v = cv2.imread(filepathname) s = cv2.cvtColor(v, cv2.COLOR_BGR2GRAY) s = cv2.Canny(s, left, right) cv2.imshow('nier',s) return s # 圈出最小方矩形框,这里Canny算法后都是白色线条,所以取色范围 127-255 即可。 # ret, binary = cv2.threshold(s,127,255,cv2.THRESH_BINARY) # contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # for c in contours: # x,y,w,h = cv2.boundingRect(c) # if w>5 and h>10: # 有约束的画框 # cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1) # # cv2.drawContours(s,contours,-1,(0,0,255),3) # 画所有框 # cv2.imshow('nier2',v) # cv2.waitKey() # cv2.destroyAllWindows()
Example #10
Source File: vis.py From Parsing-R-CNN with MIT License | 7 votes |
def vis_mask(img, mask, bbox_color, show_parss=False): """Visualizes a single binary mask.""" img = img.astype(np.float32) idx = np.nonzero(mask) border_color = cfg.VIS.SHOW_SEGMS.BORDER_COLOR border_thick = cfg.VIS.SHOW_SEGMS.BORDER_THICK mask_color = bbox_color if cfg.VIS.SHOW_SEGMS.MASK_COLOR_FOLLOW_BOX else _WHITE mask_color = np.asarray(mask_color) mask_alpha = cfg.VIS.SHOW_SEGMS.MASK_ALPHA _, contours, _ = cv2.findContours(mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) if cfg.VIS.SHOW_SEGMS.SHOW_BORDER: cv2.drawContours(img, contours, -1, border_color, border_thick, cv2.LINE_AA) if cfg.VIS.SHOW_SEGMS.SHOW_MASK and not show_parss: img[idx[0], idx[1], :] *= 1.0 - mask_alpha img[idx[0], idx[1], :] += mask_alpha * mask_color return img.astype(np.uint8)
Example #11
Source File: RegionOfInterest.py From DoNotSnap with GNU General Public License v3.0 | 7 votes |
def findEllipses(edges): contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) ellipseMask = np.zeros(edges.shape, dtype=np.uint8) contourMask = np.zeros(edges.shape, dtype=np.uint8) pi_4 = np.pi * 4 for i, contour in enumerate(contours): if len(contour) < 5: continue area = cv2.contourArea(contour) if area <= 100: # skip ellipses smaller then 10x10 continue arclen = cv2.arcLength(contour, True) circularity = (pi_4 * area) / (arclen * arclen) ellipse = cv2.fitEllipse(contour) poly = cv2.ellipse2Poly((int(ellipse[0][0]), int(ellipse[0][1])), (int(ellipse[1][0] / 2), int(ellipse[1][1] / 2)), int(ellipse[2]), 0, 360, 5) # if contour is circular enough if circularity > 0.6: cv2.fillPoly(ellipseMask, [poly], 255) continue # if contour has enough similarity to an ellipse similarity = cv2.matchShapes(poly.reshape((poly.shape[0], 1, poly.shape[1])), contour, cv2.cv.CV_CONTOURS_MATCH_I2, 0) if similarity <= 0.2: cv2.fillPoly(contourMask, [poly], 255) return ellipseMask, contourMask
Example #12
Source File: cv2_util.py From Res2Net-maskrcnn with MIT License | 7 votes |
def findContours(*args, **kwargs): """ Wraps cv2.findContours to maintain compatiblity between versions 3 and 4 Returns: contours, hierarchy """ if cv2.__version__.startswith('4'): contours, hierarchy = cv2.findContours(*args, **kwargs) elif cv2.__version__.startswith('3'): _, contours, hierarchy = cv2.findContours(*args, **kwargs) else: raise AssertionError( 'cv2 must be either version 3 or 4 to call this method') return contours, hierarchy
Example #13
Source File: core.py From robosat with MIT License | 7 votes |
def contours(mask): """Extracts contours and the relationship between them from a binary mask. Args: mask: the binary mask to find contours in. Returns: The detected contours as a list of points and the contour hierarchy. Note: the hierarchy can be used to re-construct polygons with holes as one entity. """ contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours, hierarchy # Todo: should work for lines, too, but then needs other epsilon criterion than arc length
Example #14
Source File: tracking.py From OpenCV-Computer-Vision-Projects-with-Python with MIT License | 7 votes |
def _append_boxes_from_saliency(self, proto_objects_map, box_all): """Adds to the list all bounding boxes found with the saliency map A saliency map is used to find objects worth tracking in each frame. This information is combined with a mean-shift tracker to find objects of relevance that move, and to discard everything else. :param proto_objects_map: proto-objects map of the current frame :param box_all: append bounding boxes from saliency to this list :returns: new list of all collected bounding boxes """ # find all bounding boxes in new saliency map box_sal = [] cnt_sal, _ = cv2.findContours(proto_objects_map, 1, 2) for cnt in cnt_sal: # discard small contours if cv2.contourArea(cnt) < self.min_cnt_area: continue # otherwise add to list of boxes found from saliency map box = cv2.boundingRect(cnt) box_all.append(box) return box_all
Example #15
Source File: transforms_rbbox.py From AerialDetection with Apache License 2.0 | 7 votes |
def mask2poly_single(binary_mask): """ :param binary_mask: :return: """ try: contours, hierarchy = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # contour_lens = np.array(list(map(len, contours))) # max_id = contour_lens.argmax() # max_contour = contours[max_id] max_contour = max(contours, key=len) rect = cv2.minAreaRect(max_contour) poly = cv2.boxPoints(rect) # poly = TuplePoly2Poly(poly) except: import pdb pdb.set_trace() return poly
Example #16
Source File: SudokuExtractor.py From SolveSudoku with MIT License | 7 votes |
def find_corners_of_largest_polygon(img): """Finds the 4 extreme corners of the largest contour in the image.""" opencv_version = cv2.__version__.split('.')[0] if opencv_version == '3': _, contours, h = cv2.findContours(img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find contours else: contours, h = cv2.findContours(img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find contours contours = sorted(contours, key=cv2.contourArea, reverse=True) # Sort by area, descending polygon = contours[0] # Largest image # Use of `operator.itemgetter` with `max` and `min` allows us to get the index of the point # Each point is an array of 1 coordinate, hence the [0] getter, then [0] or [1] used to get x and y respectively. # Bottom-right point has the largest (x + y) value # Top-left has point smallest (x + y) value # Bottom-left point has smallest (x - y) value # Top-right point has largest (x - y) value bottom_right, _ = max(enumerate([pt[0][0] + pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) top_left, _ = min(enumerate([pt[0][0] + pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) bottom_left, _ = min(enumerate([pt[0][0] - pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) top_right, _ = max(enumerate([pt[0][0] - pt[0][1] for pt in polygon]), key=operator.itemgetter(1)) # Return an array of all 4 points using the indices # Each point is in its own array of one coordinate return [polygon[top_left][0], polygon[top_right][0], polygon[bottom_right][0], polygon[bottom_left][0]]
Example #17
Source File: vis.py From Parsing-R-CNN with MIT License | 7 votes |
def vis_parsing(img, parsing, colormap, show_segms=True): """Visualizes a single binary parsing.""" img = img.astype(np.float32) idx = np.nonzero(parsing) parsing_alpha = cfg.VIS.SHOW_PARSS.PARSING_ALPHA colormap = colormap_utils.dict2array(colormap) parsing_color = colormap[parsing.astype(np.int)] border_color = cfg.VIS.SHOW_PARSS.BORDER_COLOR border_thick = cfg.VIS.SHOW_PARSS.BORDER_THICK img[idx[0], idx[1], :] *= 1.0 - parsing_alpha # img[idx[0], idx[1], :] += alpha * parsing_color img += parsing_alpha * parsing_color if cfg.VIS.SHOW_PARSS.SHOW_BORDER and not show_segms: _, contours, _ = cv2.findContours(parsing.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) cv2.drawContours(img, contours, -1, border_color, border_thick, cv2.LINE_AA) return img.astype(np.uint8)
Example #18
Source File: cv2_util.py From R2CNN.pytorch with MIT License | 7 votes |
def findContours(*args, **kwargs): """ Wraps cv2.findContours to maintain compatiblity between versions 3 and 4 Returns: contours, hierarchy """ if cv2.__version__.startswith('4'): contours, hierarchy = cv2.findContours(*args, **kwargs) elif cv2.__version__.startswith('3'): _, contours, hierarchy = cv2.findContours(*args, **kwargs) else: raise AssertionError( 'cv2 must be either version 3 or 4 to call this method') return contours, hierarchy
Example #19
Source File: picam.py From PiCamNN with MIT License | 7 votes |
def movement(mat_1,mat_2): mat_1_gray = cv2.cvtColor(mat_1.copy(),cv2.COLOR_BGR2GRAY) mat_1_gray = cv2.blur(mat_1_gray,(blur1,blur1)) _,mat_1_gray = cv2.threshold(mat_1_gray,100,255,0) mat_2_gray = cv2.cvtColor(mat_2.copy(),cv2.COLOR_BGR2GRAY) mat_2_gray = cv2.blur(mat_2_gray,(blur1,blur1)) _,mat_2_gray = cv2.threshold(mat_2_gray,100,255,0) mat_2_gray = cv2.bitwise_xor(mat_1_gray,mat_2_gray) mat_2_gray = cv2.blur(mat_2_gray,(blur2,blur2)) _,mat_2_gray = cv2.threshold(mat_2_gray,70,255,0) mat_2_gray = cv2.erode(mat_2_gray,np.ones((erodeval,erodeval))) mat_2_gray = cv2.dilate(mat_2_gray,np.ones((4,4))) _, contours,__ = cv2.findContours(mat_2_gray,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) if len(contours) > 0:return True #If there were any movements return False #if not #Pedestrian Recognition Thread
Example #20
Source File: helpers.py From DEXTR-KerasTensorflow with GNU General Public License v3.0 | 7 votes |
def overlay_masks(im, masks, alpha=0.5): colors = np.load(os.path.join(os.path.dirname(__file__), 'pascal_map.npy'))/255. if isinstance(masks, np.ndarray): masks = [masks] assert len(colors) >= len(masks), 'Not enough colors' ov = im.copy() im = im.astype(np.float32) total_ma = np.zeros([im.shape[0], im.shape[1]]) i = 1 for ma in masks: ma = ma.astype(np.bool) fg = im * alpha+np.ones(im.shape) * (1 - alpha) * colors[i, :3] # np.array([0,0,255])/255.0 i = i + 1 ov[ma == 1] = fg[ma == 1] total_ma += ma # [-2:] is s trick to be compatible both with opencv 2 and 3 contours = cv2.findContours(ma.copy().astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] cv2.drawContours(ov, contours[0], -1, (0.0, 0.0, 0.0), 1) ov[total_ma == 0] = im[total_ma == 0] return ov
Example #21
Source File: cv2_util.py From Clothing-Detection with GNU General Public License v3.0 | 7 votes |
def findContours(*args, **kwargs): """ Wraps cv2.findContours to maintain compatiblity between versions 3 and 4 Returns: contours, hierarchy """ if cv2.__version__.startswith('4'): contours, hierarchy = cv2.findContours(*args, **kwargs) elif cv2.__version__.startswith('3'): _, contours, hierarchy = cv2.findContours(*args, **kwargs) else: raise AssertionError( 'cv2 must be either version 3 or 4 to call this method') return contours, hierarchy
Example #22
Source File: plate_locate.py From EasyPR-python with Apache License 2.0 | 6 votes |
def sobelFrtSearch(self, src): out_rects = [] src_threshold = self.sobelOper(src, self.m_GaussianBlurSize, self.m_MorphSizeWidth, self.m_MorphSizeHeight) _, contours, _ = cv2.findContours(src_threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for it in contours: mr = cv2.minAreaRect(it) if self.verifySizes(mr): safeBoundRect, flag = self.calcSafeRect(mr, src) if not flag: continue out_rects.append(safeBoundRect) return out_rects
Example #23
Source File: Dataloader.py From Text_Segmentation_Image_Inpainting with GNU General Public License v3.0 | 6 votes |
def draw_contour(img, mask): a, b, c = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) for cnt in b: approx = cv2.approxPolyDP(cnt, 0, True) cv2.drawContours(img, [approx], 0, (255, 255, 255), -1) return img
Example #24
Source File: DetectChars.py From ALPR-Indonesia with MIT License | 6 votes |
def findPossibleCharsInPlate(imgGrayscale, imgThresh): listOfPossibleChars = [] # this will be the return value contours = [] imgThreshCopy = imgThresh.copy() # find all contours in plate contours, npaHierarchy = cv2.findContours(imgThreshCopy, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # for each contour possibleChar = PossibleChar.PossibleChar(contour) if checkIfPossibleChar(possibleChar): # if contour is a possible char, note this does not compare to other chars (yet) . . . listOfPossibleChars.append(possibleChar) # add to list of possible chars # end if # end if return listOfPossibleChars # end function ###################################################################################################
Example #25
Source File: plate_locate.py From EasyPR-python with Apache License 2.0 | 6 votes |
def sobelSecSearchPart(self, bound, refpoint, out): bound_threshold = self.sobelOperT(bound, 3, 6, 2) tempBoundThread = bound_threshold.copy() clearLiuDingOnly(tempBoundThread) posLeft, posRight, flag = bFindLeftRightBound(tempBoundThread) if flag: if posRight != 0 and posLeft != 0 and posLeft < posRight: posY = int(bound_threshold.shape[0] * 0.5) for i in range(posLeft + int(bound_threshold.shape[0] * 0.1), posRight - 4): bound_threshold[posY, i] = 255 for i in range(bound_threshold.shape[0]): bound_threshold[i, posLeft] = 0 bound_threshold[i, posRight] = 0 _, contours, _ = cv2.findContours(bound_threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for it in contours: mr = cv2.minAreaRect(it) if self.verifySizes(mr): tmp = (mr[0][0] + refpoint[0], mr[0][1] + refpoint[1]) out.append((tmp, mr[1], mr[2]))
Example #26
Source File: Grouping.py From CSGNet with MIT License | 6 votes |
def tightboundingbox(self, image): ret, thresh = cv2.threshold(np.array(image, dtype=np.uint8), 0, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) bb = [] for c in contours: x, y, w, h = cv2.boundingRect(c) # +1 is done to encapsulate entire figure w += 2 h += 2 x -= 1 y -= 1 x = np.max([0, x]) y = np.max([0, y]) bb.append([y, x, w, h]) bb = self.nms(bb) return bb
Example #27
Source File: plate_locate.py From EasyPR-python with Apache License 2.0 | 6 votes |
def colorSearch(self, src, color, out_rect): """ :param src: :param color: :param out_rect: minAreaRect :return: binary """ color_morph_width = 10 color_morph_height = 2 match_gray = colorMatch(src, color, False) _, src_threshold = cv2.threshold(match_gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) element = cv2.getStructuringElement(cv2.MORPH_RECT, (color_morph_width, color_morph_height)) src_threshold = cv2.morphologyEx(src_threshold, cv2.MORPH_CLOSE, element) out = src_threshold.copy() _, contours, _ = cv2.findContours(src_threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: mr = cv2.minAreaRect(cnt) if self.verifySizes(mr): out_rect.append(mr) return out
Example #28
Source File: cv2_util.py From DetNAS with MIT License | 6 votes |
def findContours(*args, **kwargs): """ Wraps cv2.findContours to maintain compatiblity between versions 3 and 4 Returns: contours, hierarchy """ if cv2.__version__.startswith('4'): contours, hierarchy = cv2.findContours(*args, **kwargs) elif cv2.__version__.startswith('3'): _, contours, hierarchy = cv2.findContours(*args, **kwargs) else: raise AssertionError( 'cv2 must be either version 3 or 4 to call this method') return contours, hierarchy
Example #29
Source File: segmentation_mask.py From Parsing-R-CNN with MIT License | 6 votes |
def _findContours(self): contours = [] masks = self.masks.detach().numpy() for mask in masks: mask = cv2.UMat(mask) contour, hierarchy = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1 ) reshaped_contour = [] for entity in contour: assert len(entity.shape) == 3 assert entity.shape[1] == 1, "Hierarchical contours are not allowed" reshaped_contour.append(entity.reshape(-1).tolist()) contours.append(reshaped_contour) return contours
Example #30
Source File: pycv2.py From vrequest with MIT License | 6 votes |
def sobel(filepathname): v = cv2.imread(filepathname) s = cv2.cvtColor(v,cv2.COLOR_BGR2GRAY) x, y = cv2.Sobel(s,cv2.CV_16S,1,0), cv2.Sobel(s,cv2.CV_16S,0,1) s = cv2.convertScaleAbs(cv2.subtract(x,y)) s = cv2.blur(s,(9,9)) cv2.imshow('nier',s) return s # ret, binary = cv2.threshold(s,40,255,cv2.THRESH_BINARY) # contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # for c in contours: # x,y,w,h = cv2.boundingRect(c) # if w>5 and h>10: # cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1) # cv2.imshow('nier2',v) # cv2.waitKey() # cv2.destroyAllWindows()